

CHAITANYA DEGREE & PG COLLEGE FOR WOMEN

AFFILIATED TO ANDHRA UNIVERSITY

CHAITANYA NAGAR, OLD GAJUWAKA, VISAKHAPATNAM-530026

B.Sc HONOURS PHYSICS

Paper	Paper Name	Outcomes After completion of the course the student	
•		should be able to	
	SEMESTER I		
COURSE 1	SE ESSENTIALS AND APPLICATIONS OF MATHEMATICA L, PHYSICAL AND CHEMICAL SCIENCES		
		Internet and to gain an understanding of network security concepts, including threats, vulnerabilities,	
		and countermeasures.	

COURSE 2	ADVANCES IN MATHEMATICA L, PHYSICALAND CHEMICAL SCIENCES	CO 1 :Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems.
		 CO 2 :To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations. 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials. CO 3 : Understand the interplay and connections between mathematics, physics, and chemistry in
		various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
		CO 4 :Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite).
	SE	EMESTER II

	[
COURSE 3	Mechanics	co1: understand and apply the concepts of scalar
	&properties of	and vector fields, calculate the gradient of a scalar
	matter	field, determine the divergence and curl of a vector field
		co 2 : apply the laws of motion, solve equations of motion for variable mass systems
		co 3 : define a rigid body and comprehend rotational
		kinematic relations, derive equations of motion for
		rotating bodies, analyze the precession of a top and
		gyroscope, understand
		the precession of the equinoxes
		CO 4 : define central forces and provide examples,
		understand the characteristics and conservative
		nature of central forces, derive equations of motion under central forces.
		co 5 : differentiate between Galilean relativity and
		the concept of absolute frames, comprehend the
		postulates of the special theory of relativity, apply
		Lorentz transformations, understand and solve
		problems
	PRACTICAL	CO 1 : Students should become proficient in using
	Mechanics	laboratory
	&properties of matter	equipment and experimental techniques to measu systems.
		CO 2 :Students should be able to apply theoretical
		concepts learned in lectures to real-world situations, and understand the limitations of theoretical
		models. lectures to real-world situations, and
		understand the limitations of theoretical models.
		CO 3 :Students should be able to accurately record
		and analyze experimental data, including
		understanding the significance of error analysis and
		statistical methods.
COURSE 4	Waves&	CO 1 : To describe the basic characteristics of waves
	oscillations	such as frequency, wavelength, amplitude, period, and speed.
		CO 2 :utilize mathematical relationships related to wave characteristics.
		CO 3 : To compare particle motion and wave motion
		in different types of waves

	PRACTICAL	CO 1 : determine the unknown frequency of tuning fork
	Waves&	by volume resonator experiment
	oscillations	CO 2 : determine 'g' by compound/bar pendulum
		CO 3 : Students are made to determine the force
		constant of a spring by static and dynamic method.
	S	EMESTER-III
COURSE 5	Optics	CO 1: Explain about the different aberrations in lenses
		and discuss the methods of minimizing them
		CO 2 : Understand the phenomenon of interference of
		light and its formation in (i) Lloyd's single mirror due
		to division of wave front and (ii) Thin films, Newton's
		rings and Michelson interferometer due to
		division of amplitude.
		CO 3: Distinguish between Fresnel's diffraction and
		Fraunhoffer diffraction and observe the diffraction
		patterns in the case of single slit and the diffraction
		grating and to describe the construction and
		working of zone plate and make the comparison of
		zone plate with convex lens
		CO 4: Explain the various methods of production of
		plane, circularly and polarized light and their detectio
		and the concept of optical activity
	PRACTICAL	CO 1 : Students should become proficient in using laboratory
	Optics	equipment and experimental techniques for studying light and its
		interactions with matter.
		CO 2 : Students should be able to apply theoretical concepts learned
		in lectures to real-world situations, and understand the limitations of
		theoretical models.
		CO 3 : Students should be able to accurately record and analyze
		experimental data, including understanding the significance of error
		analysis and statistical methods.
COURSE 6	Heat &	CO 1
	Thermodynamics	:understandthebasicaspectsofkinetictheoryofgases,Max
		well-Boltzmann distribution law,
		equipartition of energies, mean free path of molecular
		collisions
		andthetransportphenomenon in ideal gases
		CO 2 : Gain knowledge on the basic concepts of
		thermodynamics, the first and the second lawof
		thermodynamics, the basic principles of refrigeration,
		the concept of entropy,

		thethermodynamicpotentials and their physical
		interpretations.
		Understand the working of Carnot's ideal heatengine, Carn
		ot cycleanditsefficiency
		CO 3 : Develop critical understanding of concept of
		Thermodynamic potentials, the formulation of
		Maxwell's equations and its applications.
		СО
		4: Differentiate between principles and methods to produc
		elowtemperature, liquefy
		air,andunderstand
		thepractical applications of substances at
		lowtemperatures
		CO 1. Chudanta ab and dha anna ann Cuinntin a'
	PRACTICAL	CO 1 : Students should become proficient in using
	Heat &	laboratory equipment and experimental techniques
	Thermodynamics	for studying heat and
		thermodynamics. CO 2 :
		Students should be able to apply theoretical concepts learned in lectures to real-world situations,
		and understand the limitations
		of theoretical models.
		CO 3 :
		Students should be able to accurately
		record and analyze experimental data, including
		understanding the significance of
		error analysis and statistical methods.
		Co 4:
		Students should be able to identify sources
		of error, troubleshoot experimental problems, and
		develop critical thinking skills in
		experimental design and analysis.
COURSE 7	Electronic	CO 1 :Understand the behavior of P-N junction
	devices&	diodes in forward and reverse bias conditions and
	circuits	analyze the impact of junction capacitance on diode
		characteristics.
		Co 2: Analyze and compare the characteristics and
		operation of different BJT configurations (CB, CE, and
		CC) and demonstrate proficiency in biasing
		techniques.

		phototransistors, and LDRs. Co 5: Understand the operation of rectifiers (half- wayo, full wayo, and bridge), analyze the ringle
		wave, full-wave, and bridge), analyze the ripple factor
		and efficiency, and demonstrate knowledge of different filter types and three-terminal voltage
<u></u>	PRACTICAL Electronic devices&	regulators CO 1 : Understand the principles of electronic devices and circuits and their applications in real-world scenarios.
	circuits	Co 2: Analyze and design electronic circuits using diodes, transistors, and operational amplifiers.
		Co 3: Understand the importance of biasing and stability in electronic circuits and how to achieve them.
COURSE 8	Analog& Digital electronics	CO 1 : Understand Principles and Working of Operational Amplifier
		Co 2: Apply their knowledge on OP-Amp in different Applications
		Co 3: understand the number systems, Binary codes
		and Complements.
		Co 4: understand the Boolean algebra and
	PRACTICAL	Co 4: understand the Boolean algebra and simplification of Boolean expressions. Co 5: analyze logic processes and implement logical operations using combinational logic circuits. CO 1 : Understand the principles of analog and digital
	PRACTICAL Analog& Digital electronics	Co 4: understand the Boolean algebra and simplification of Boolean expressions. Co 5: analyze logic processes and implement logical operations using combinational logic circuits.
	Analog&	Co 4: understand the Boolean algebra and simplification of Boolean expressions. Co 5: analyze logic processes and implement logical operations using combinational logic circuits. CO 1 : Understand the principles of analog and digital electronic circuits and their applications in real-world scenarios. Co 2: Analyze and design analog electronic circuits using diodes, transistors, and operational amplifiers.
	Analog&	Co 4: understand the Boolean algebra and simplification of Boolean expressions. Co 5: analyze logic processes and implement logical operations using combinational logic circuits. CO 1 : Understand the principles of analog and digital electronic circuits and their applications in real-world scenarios. Co 2: Analyze and design analog electronic circuits

COURSE 9	Electricity &	CO 1 : Understand the Gauss law and its application
	magnetism	to obtain electric field in different cases and
		formulate
		the relationship between electric displacement
		vector, electric polarization, Susceptibility,
		Permittivity and Dielectric constant.
		Co 2: learn the methods used to solve problems
		using loop analysis, Nodal analysis, Thvenin's
		theorem,
		Norton's theorem, and the Superposition theorem
		Co 3:Distinguish between the magnetic effect of
		electric current and electromagnetic induction and
		apply
		the related laws in appropriate circumstances.
	PRACTICAL	CO 1 : Demonstrate a thorough understanding of the
	Electricity &	
	,	fundamental concepts and principles of electricity and
	magnetism	magnetism.
		CO 2 : Apply the laws and principles of electricity and
		magnetism to analyze and solve electrical and magnetic
		problems.
		CO 3 : Design, construct, and test electrical circuits
		using various components and measuring instruments
COURSE 10	Modern	CO 1 : Understand the principles of atomic structure
	physics	and spectroscopy.
		Co 2: Understand the principles of molecular structure
		and spectroscopy
		Co 3: Develop critical understanding of concept of
		Matter waves and Uncertainty principle.
		Co 4: Get familiarized with the principles of quantum
		mechanics and the formulation of Schrodinger wave
		equation and its applications.
		co5: Increase the awareness and appreciation of
		superconductors and their practical applications

Γ	1	
	PRACTICAL	CO 1 : Apply experimental techniques and equipment to
	Modern	investigate and analyze phenomena related to
	physics	modern physics, such as quantum mechanics, relativity, atomic
		physics, and nuclear physics.
		Co 2:Demonstrate a deep understanding of the principles and
		theories of modern physics through
		hands-on experimentation and data analysis.
		Co 3: Develop proficiency in using advanced laboratory
		instruments and techniques specific to
		modern physics experiments, such as spectroscopy,
		interferometry, particle detectors, and
		radiation measurement.
		Co 4: Analyze and interpret experimental data using statistical
		methods and error analysis, drawing
		meaningful conclusions and relating them to theoretical
		concepts
COURSE 11	Introduction to	CO 1 : know about high energy particles and their
	Nuclear&	applications which prepares them for further study and
	particle physic	research in elcitrapphysics
		Co 2:Students can explain important concepts on
		nucleon-nucleon interaction, such as its short-range, spin
		dependence, isospin, and tensors.
		Co 3: Students can show the potential shapes from
		nucleon nucleon interactions.
		Co 4: Students can explain the single particle model, its
		strengths, and weaknesses
		Co 5: Students can explain magic numbers based on this
		model
	PRACTICAL	CO 1 : Gain a solid understanding of fundamental
	Introduction to	concepts in nuclear and particle physics.
	Nuclear&	Co 2:Acquire knowledge of experimental techniques and
	Particle physics	methodologies used in the field.
		Co 3: Understand the principles and operation of
		laboratory equipment and instruments specific to nuclear
		and particle physics experiments.
		Co 4: Develop proficiency in conducting experiments
		related to nuclear and particle physics.
		Co 5: Acquire skills in data acquisition, analysis, and
		interpretation using appropriate software and
		techniques.
		Co 6: Learn to design and perform experiments, including
		calibration, measurement, and control of
		variables