

CHAITANYA DEGREE & PG COLLEGE FOR WOMEN

AFFILIATED TO ANDHRA UNIVERSITY

CHAITANYA NAGAR, OLD GAJUWAKA, VISAKHAPATNAM-530026

B.Sc HONOURS COMPUTER

Paper	Paper Name	Outcomes After completion of the course the student			
		should be able to			
SEMESTER I					
COURSE 1	ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES	 CO 1 :Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures. CO 2 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations CO 3 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life. CO 4 :Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. CO 5 : To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures. 			
COURSE 2	ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES	 CO 1 :Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems. CO 2 :To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations. 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials. CO 3 :Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health. CO 4 : Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. CO 5 :Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite). 			

COURSE 3	Problem Solving using C	SEMESTER II CO 1 : Understand the working of a digital computer and Fundamental constructs of Programming CO 2 : Analyze and develop a solution to a given problem with suitable control structures CO 3 : Apply the derived data types in program solutions CO 4 : Use the 'C' language constructs in the right way CO 5 : Apply the Dynamic Memory Management for effective memory		
COURSE 4	Digital Logic Design	utilization CO 1 : Understand how to Convert numbers from one radix to another radix and performarithmetic operations.		
		 CO 2 :Simplify Boolean functions using Boolean algebra and k-maps CO 3 :Design adders and subtractors circuits CO 4 :Design combinational logic circuits such as dec CO 5 :Use flip flops to design registers and counters. 		
		SEMESTER III		
COURSE 5	Object Oriented Programming using Java	 CO 1 :Understand the basic concepts of Object-Oriented Programming and Java Program Constructs CO 2 :Implement classes and objects and analyze Inheritance and Dynamic Method Dispatch 		
		 CO 3 :Demonstrate various classes in different packages and can design own packages CO 4 :Manage Exceptions and Apply Threads 		
COURSE 6	Data Structures using C	CO 5 :Create GUI screens along with event handling CO 1 : Understand various Data Structures for data storage and processing.		
		 CO 2 : Realize Linked List Data Structure for various operations CO 3 : Analyze step by step and develop algorithms to solve real world problems by implementing Stacks, Queues data structures. CO 4 : Understand and implement various searching & sorting techniques. CO 5 : Understand the Non-Linear Data Structures such as Binary Trees and Graphs 		

COURSE 7	Computer	CO1 : Identify different types of instructions
	Organization	CO 2 : Differentiate between micro-programmed and hard-wired
		control units.
		CO 3 : Analyse the performance of hierarchical organization of memory.
		CO 4 : Summarize different data transfer techniques.
		CO 5 : Demonstrate arithmetic operations on fixed- and
		floating-point numbers and illustrate concepts of parallel
		processing.
COURSE 8	Operating Systems	CO1 : Demonstrate knowledge and comprehension of operating system functions.
		CO 2 : Analyze different process scheduling algorithms and apply them to manage processes and threads effectively
		CO 3 : Create strategies to prevent, detect, and recover from
		deadlocks, and design solutions for inter-process communication
		and synchronization problems.
		CO 4 : Compare and contrast different memory allocation strategies and evaluate their effectiveness
		CO 5 : Evaluate disk scheduling algorithms while implementing OS
		security measures
		SEMESTER IV
COURSE 9	Database	CO 1 : Differentiate between database systems and file based
	Management	systems
	Systems	CO 2 : Design a database using ER model
		CO 3: Use relational model in database design
		CO 4 : Use SQL commands for creating and manipulating data stored in databases.
		CO 5 : Write PL/SQL programs to work with databases.
COURSE 10	Object Oriented	CO 1 : Understand and apply the fundamental principles of
	Software Engineering	Object-Oriented Programming (OOP) concepts and Unified
	Lingineering	Modeling Language (UML) basics, in the development of software solutions.
		CO 2 : Analyze and specify software requirements, develop use
		cases and scenarios, apply object- oriented analysis and design
		(OOAD) principles
		CO 3 : Familiar with the concept of test-driven development (TDD) and its practicalimplementation
		CO 4 : Analyze and Evaluate Software Maintenance and Evolution Strategies
		CO 5 : Apply Advanced Object-Oriented Software Engineering Concepts

COURSE 11	Data Communication and Computer Networks	 CO 1 :Understand and apply network applications, hardware, software, and reference models for network communication. CO 2 :Design and analyze data link layer protocols, multiple access protocols, and wireless LAN technologies. CO 3 :Design routing algorithms, congestion control algorithms, and evaluate network layer protocols for internetworking.
		 CO 4 :Analyze transport service, transport protocols, and evaluate UDP and TCP in the internet. CO 5 : Understand and evaluate application layer protocols, including DNS, email, WWW, and network management protocols