B.Sc. Honours in Artificial Intelligence (Major)

Paper	Paper Name	Outcomes After completion of the course the student should be
		able to
	-	SEMESTER I
COURSE 1	ESSENTIALS AND APPLICATIONS OF	CO 1 : Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures. CO 2 : To Explain the basic principles and concepts underlying a broad range of fundamental array of physics and to Connect
	MATHEMATICA L, PHYSICAL AND CHEMICAL SCIENCES	their knowledge of physics to everyday situations CO 3 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life. CO 4 : Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts.
		CO 5 : To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.
COURSE 2	ADVANCES IN MATHEMATICA L, PHYSICALAND CHEMICAL SCIENCES	CO 1:Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems. CO 2 :To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations. 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials. Understand the principles and techniques used in computer- aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health. CO 3 :Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical
		 and chemical principles can be used to explain and predict phenomena in different contexts. CO 4:Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of

		transmission media, such as wired (e.g., copper cables, fiber
		optics) and wireless (e.g., radio waves, microwave, satellite).
COUDSE 3	Dython for Data	SEMESTER II CO 1 : Understand basic Puthon suntay, data types, operators
COURSE 3	Python for Data Science	control flow statements, functions, and object-oriented programming principles.
		CO 2 : Data Manipulation with Pandas CO 3: Understand NumPy arrays and their efficient operations for mathematical calculations.
		CO 3 : Data Visualization with Matplotlib & Exploratory Data Analysis
		CO 4 : Machine Learning with Scikit-learn & Data Preprocessing
	Practical	CO 1: Implement a given problem as a python program.
		CO 2: To write loops and decision statements in Python
		CO 3: To implement functions and modules in Python.
		CO 4: To implement different data structures in python
		CO 5: To implement data analysis using pandas and graphs
COURSE 4	Statistical Methods and Probability Distribution	CO 1:Aims to equip students with the ability to understand and apply basic probability concepts.
		CO 2: Identify relevant probability distributions for real- world scenarios,
		CO 3:Calculate key statistical measures, and interpret data using statistical inference techniques,
		CO 4:Allowing them to analyze and draw conclusions from data sets across various fields;
		CO 5:Key course outcomes might includE
	Practical	CO 1:Apply the various statistical methods for real life problems
		CO 2: Analyze the uni-variate and bivariate data using statistical techniques.
	DO 0000 0000000000000000000000000000000	SEMESTER III
COURSE 5	DOCUMENT ORIENTED DATABASE	CO 1: Explain the core principles of document databases, differentiating them from traditional relational databases.
		CO 2 :Describe the concept of a flexible schema and how it benefits data modeling in document databases.
		CO 3:Create and manage collections within a document

		database.
		CO 4: Apply normalization techniques appropriate for document databases to avoid redundancy and maintain data consistency. CO 5: Integrate a document database with application code in various programming languages.
COURSE 6	Practical	CO 1 : Installation of mongo db ,configuring, running mongo db
		CO 2 : Implementation of crud operations
		CO 3 : Implementing index methods, aggregation methods
		CO 4 : To study and implement DDL, DML commands using MYSQL
		CO 5 : Implementing MySQL Programmes using Control Structures and functions
COURSE 6	OPERATING SYSTEM	CO 1 : Analyse the services and functions of operating systems
		CO 2 : Analyse the concepts of processes in operating system and illustration of the scheduling of processor for a given problem instance.
		CO 3 : Analyse memory management techniques, concepts of virtual memory
		CO 4 : To understand Introduction to Unix:- Architecture of Unix, Features of Unix , Unix Commands
		CO 5 : To understand Shell programming and Simple shell program
	Practical	CO 1: To implement CPU scheduling algorithms in c programming language
		CO 2: To implement file/directory handling commands in Unix.
		CO 3: To display list of currently logged users in Unix shell script
		CO 4: To implement binary search using shell script
		CO 5: To implement Fibonacci series using shell script
COURSE 7	OBJECT ORIENTED PROGRAMMING	CO 1 : Overview of java programming, history and its
		features.
		CO 2 : Understand fundamentals of programming such as
		variables, conditional and iterative execution, statements, etc.

		CO 3 : Understand the principles of arrays, inheritance,
		packages and multi-threading.
		CO 4 : Understand the Fundamental features of Managing
		Errors, Exceptions and Applet Programming.
		CO 5 : Understand the Files concept in java.
COURSE 7		CO 1: Overview of java programming.
	Practical	CO 2: Understand fundamentals of programming such as
		variables, conditional and iterative execution, statements, etc
		CO 3: Understand the principles of arrays, inheritance,
		packages and multi-threading.
		and Applet Programming
		CO 5. Understand the Files concent in java
		co s. chucistanu the r nes concept în java.
COURSE 8	INFERENTIAL	CO 1 :: A fundamental understanding of Parametric models for
	STATISTICS	developing relevant inferences on associated parameters
		CO 2 : Knowledge of point and interval estimation procedures
		and different methods of point estimation,
		CO 3 : Using Neyman Pearson Lemma and finding Uniformly Most Powerful Test,
		CO 4 : Various basic concepts on sampling distributions and
		large sample tests based on normal distribution,
		CO 5 : Small sample tests based on chi-square, Student's and Snedecor's F distributions
	Practical	CO 1: Apply the various statistical methods for real life problems
		CO 2: Apply the SPSS techniques and give the interpretations.
		SEMESTER IV
COURSE 9	ДАТА	CO1 : To understand the principles of Data warehousing and
	WAREHOUSI	Data Mining.
	NG AND	CO 2 : To be familiar with the Data warehouse architecture and
	DATA	its Implementation.
	MINING	CO 3 : To know the Architecture of a Data Mining system.
		CO 4 : To understand the various Data preprocess.
		CO 5 : To perform classification and prediction of data.
	Practical	CO 1: Implement data files conversions and can train, test data
		sets for an application.
		CO 2: Generate accurate models, and demonstrate data pre -
		CO 3: Demonstrate text mining and web mining techniques
COURSE 10	MACHINE	CO 1 : The basic concepts of machine learning.
	LEARNING	CO 2 : Construct supervised learning models.
	USING PYTHON	CO 3 : Construct unsupervised learning algorithms
		CO 4 :Evaluate and compare different models
		CO 5 : ENSEMBLE TECHNIQUES AND UNSUPERVISED

		LEARNING AND NEURAL NETWORKS
	Practical	CO 1: Explain the basic concepts of machine learning
		CO 2: Construct supervised learning models.
		CO 3: Construct unsupervised learning algorithms.
		CO 4: Evaluate and compare different models
		CO 4. Evaluate and compare unterent models
COURSE 11	INTRODUCTIO	CO 1 : Understand the informed and uninformed problem
	N TO AI	types and apply search strategies to solve them.
		CO 2 : Apply difficult real life problems in a state space
		representation so as to solve them using AI techniques like
		searching and game playing.
		CO 3 : Design and evaluate intelligent expert models for
		perception and prediction from intelligent environment.
		CO 4 : Formulate valid solutions for problems involving
		techniques.
		CO 5 : Demonstrate and enrich knowledge to select and
		apply AI tools to synthesize information and develop
		models within constraints of application area.
	Practical	CO 1: Develop various basic python programs
		CO 2: Analyse and develop solutions for various problems
		like water jug, Tic – Tack – Toe, etc.
		CO 3: Develop programs using DFS, BFS, A* and hill
		climbing algorithms.
		CO 4: Develop python programs for analysing given data
		set
		CO 5: Develop python programs for implementing Bayes
		Classification.
COUDEE 12	DDEDICULUE	SEMESTER V
COURSE 12	PREDICTIVE	coll: Understand prediction-related principles, theories
	ANALI IIUS USING DVTHON	and approaches.
	USING FITTION	CO 3. Understand the basics of predictive techniques and
		statistical annroaches
		CO 4.Understand basics of neural networks
		CO 5: Analyse supervised and unsupervised algorithms.
	Practical	CO 1: Implement various logistics regression algorithms
		CO 2: Implement numerical optimization and test errors
		CO 3: Implement K - Nearest algorithms
		CO 4: Implement Random forests analysis
COURSE 13	ALGORITHMS	CO 1 : Understanding the foundations of Artificial
	FOR	Intelligence
	INTELLIGENT	CO 2 : Representing a problem as a search solving
	SYSTEMS	problem
		CO 3 : Searching a space of answers for a solution to a
		problem in practical time.
		CO 4 : Representing problems in terms of logic and
		deduction.
		CO 5 : Representing intelligent behavior in terms of agent.

	Practical	CO 1: understand PROLOG
		CO 2: Develop algorithms for solving logical problems.
COURSE 14	NATURAL LANGUAGE PROCESSING	CO 2: Develop algorithms for solving logical problems. CO 1: Upon successful completion of this course, students should have the knowledge and skills to Apply basic principles of AI in solutions that require problem solving, knowledge representation CO 2: Show sensitivity to linguistic phenomena and an ability to model them with formal grammars CO 3: Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems CO 4: To apply the NLP techniques to IR applications
		CO 5 : To construct data and perform data analysis.
	Practical	CO 1: Apply basic principles of AI in solutions that require problem solving, knowledge representation CO 2: Show sensitivity to linguistic phenomena and an ability to model them with formal grammars CO 3: Understand and carry out proper experimental methodology for training and evaluating empirical NLP systems CO 4: Able to design, implement CO 5: Analyze NLP algorithm
COURSE 15	Software Project Management	CO 1 : implement function point analysis and models like flexi and SEL. CO 2 : implement basic, intermediate and detailed COCOMO. CO 3 : Determine and classify the project life cycle and
		estimate the effort of Agile methods CO 4 : Formulate the project activity plan and project risk management CO 5 : Organize and manage the project contracts and Establishing the staffing pattern and Document the organizational behavior.
	Practical	CO 1: Implement function point analysis and models like flexi and SEL. CO 2: Implement basic, intermediate and detailed COCOMO