

CHAITANYA DEGREE & PG COLLEGE FOR WOMEN

AFFILIATED TO ANDHRA UNIVERSITY

CHAITANYA NAGAR, OLD GAJUWAKA, VISAKHAPATNAM-530026

B.Sc HONOURS MATHEMATICS

Paper	Paper Name	Outcomes After completion of the course the student
	-	should be able to
		SEMESTER I
COURSE 1	ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES	 CO 1 :Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures. CO 2 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations CO 3 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life. CO 4 :Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. CO 5 : To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats, vulnerabilities, and countermeasures.
COURSE 2	ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES	 CO 1 :Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems. CO 2 :To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations. 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials. CO 3 :Understand the principles and techniques used in computer-aided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health. CO 4 : Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. CO 5 :Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite).
COURSE 3	DIFFERENTIAL EQUATIONS &	SEMESTER IICO 1 :Solve first order first degree linear differential equations.CO 2 : Convert a non-exact homogeneous equation to exact differentialequation by using an integrating factor.

	PROBLEM SOLVING SESSIONS	CO 3 : Know the methods of finding solution of a differential equation of
	363310113	first order but not of first degree.
		CO 4 :Solve higher-order linear differential equations for both
		homogeneous and non-homogeneous, with constant coefficients.
		CO 5 : Understand and apply the appropriate methods for solving higher
		order differential equations.
COURSE 3	ANALYTICAL SOLID	CO 1 : understand planes and system of planes
	GEOMETRY	CO 2 : know the detailed idea of lines
		CO 3 : understand spheres and their properties
		CO 4 : know system of spheres and coaxial system of spheres
		CO 5 : understand various types of cones
		SEMESTER III
COURSE 5	GROUP THEORY	CO 1 : Acquire the basic knowledge and structure of groups
		CO 2 : Get the significance of the notation of a subgroup and cosets.
		CO 3 : understand the concept of normal subgroups and properties of
		normal subgroup
		CO 4 : Study the homomorphisms and isomorphisms with applications.
		CO 5 : Understand the properties of permutation and cyclic groups
COURSE 6	NUMERICAL	CO 1 : Difference between the operators $\Delta \nabla$, ,e and the relation
	METHODS	between them
		CO 2 : Know about the newton – gregory forward and backward
		interpolation
		CO 3 : Know the central difference operators $\delta \mu \sigma$, , and relation
		between them
		CO 4 : Solve algebraic and transcendental equations
		CO 5 : Understand the concept of curve fitting
COURSE 7	LAPLACE	CO 1 : Understand the definition and properties of laplace
	TRANSFORMS	transformations
		CO 2 : get an idea about first and second shifting theorems and change
		of scale property
		CO 3 : Understand laplace transforms of standard functions like bessel,
		error function etc
		CO 4 : Know the reverse transformation of laplace and properties
		CO 5 : Get the knowledge of application of convolution theorem
COURSE 8	SPECIAL FUNCTIONS	CO 1 :Understand the Beta and Gamma functions, their properties and
		relation between these two functions, understand the orthogonal
		properties of Chebyshev polynomials and recurrence relations.
		CO 2 :Find power series solutions of ordinary differential equations.
		CO 3 :Solve Hermite equation and write the Hermite Polynomial of order
		(degree) n, also Find the generating function for Hermite Polynomials,
		study the orthogonal properties of Hermite Polynomials and recurrence
		relations.
		CO 4 :Solve Legendre equation and write the Legendre equation of first
		kind, also find the generating function for Legendre Polynomials,
		understand the orthogonal properties of Legendre Polynomials.
		CO 5 :Solve Bessel equation and write the Bessel equation of first kind of
		CO 5 :Solve Bessel equation and write the Bessel equation of first kind of order n, also find the generating function for Bessel function understand
		CO 5 :Solve Bessel equation and write the Bessel equation of first kind of

COURSE 9	DINIC THEODY	CO 4 showing the basis in substantian of the state for the substantian state in the
	RING THEORY	CO 1 :Acquire the basic knowledge of rings, fields and integral domains
		CO 2 : get the knowledge of subrings and ideals
		CO 3 :Construct composition tables for finite quotient rings
		CO 4 : Study the homomorphisms and isomorphisms with applications.
COUDCE 10		CO 5 : Get the idea of division algorithm of polynomials over a field.
COURSE 10	INTRODUCTION TO REAL ANALYSIS	CO 1 : Get clear idea about the real numbers and real valued functions.
	REAL ANALTSIS	CO 2 : Obtain the skills of analysing the concepts and applying
		appropriate methods for testing convergence of a sequence/ series.
		CO 3 : Test the continuity and differentiability and Riemann integration
		of a function.
		CO 4 : Know the geometrical interpretation of mean value theorems.
		CO 5 : Know about the fundamental theorem of integral calculus
COURSE 11	INTEGRAL	CO 1 : Understand the application of Laplace transforms to solve
	TRANSFORMS WITH	odes
	APPLICATIONS	CO 2 : Understand the application of Laplace transforms to solve
		Simultaneous des
		CO 3 : Understand the application of Laplace transforms to
		Integral equations
		CO 4 : Basic knowledge of Fourier-Transformations
		CO 5 : Comprehend the properties of Fourier transforms and solve
		problems related to finite Fourier transforms.
COUDSE 12		SEMESTER V
COURSE 12	LINEAR ALGEBRA	 CO 1 : Understand the concepts of vector spaces, subspaces CO 2 : Understand the concepts of basis, dimension and their properties
		CO 3 : Understand the concept of linear transformation and its
		CO 3. Orderstand the concept of inear transformation and its
		nronerties
		properties
		CO 4 : Apply cayley- hamilton theorem to problems for finding the
		CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine
		CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods
		 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine
COURSE 13	VECTORs CALCULUS	CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces
COURSE 13	VECTORs CALCULUS	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral.
COURSE 13	VECTORs CALCULUS	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral.
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral. CO 3: Determine the gradient, divergence and curl of avector and vector
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral. CO 3: Determine the gradient, divergence and curl of avector and vector identities.
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral. CO 3: Determine the gradient, divergence and curl of avector and vector identities. CO 4: Evaluate line, surface and volume integrals.
COURSE 13	VECTORs CALCULUS	 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral . CO 3: Determine the gradient, divergence and curl of avector and vector identities. CO 4: Evaluate line, surface and volume integrals. CO 5: understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral
		 CO 4: Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5: Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1: Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2: Learn applications interms of finding surface area by double integral and volume by triple integral. CO 3: Determine the gradient, divergence and curl of avector and vector identities. CO 4: Evaluate line, surface and volume integrals. CO 5: understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral (Stokes theorem)
COURSE 13 COURSE 14	ADVANCED	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double integral and volume by triple integral . CO 3 : Determine the gradient, divergence and curl of avector and vector identities. CO 4 : Evaluate line, surface and volume integrals. CO 5 : understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral (Green'stheorem), relation between line and surface integral (Stokes theorem) CO 1 : Find derivatives using various difference formulae
	ADVANCED NUMERICAL	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double integral and volume by triple integral. CO 3 : Determine the gradient, divergence and curl of avector and vector identities. CO 4 : Evaluate line, surface and volume integrals. CO 5 : understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral (Stokes theorem) CO 1 : Find derivatives using various difference formulae CO 2 : Understand the process of numerical integration
	ADVANCED	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double integral and volume by triple integral and volume by triple integral and curl of avector and vector identities. CO 4 : Evaluate line, surface and volume integrals. CO 5 : understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral (Stokes theorem) CO 1 : Find derivatives using various difference formulae CO 2 : Understand the process of numerical integration CO 3 : Solvesimultaneous linear systems of equations
	ADVANCED NUMERICAL	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double integral and volume by triple integral . CO 3 : Determine the gradient, divergence and curl of avector and vector identities. CO 4 : Evaluate line, surface and volume integrals. CO 5 : understand relation between line integral and volume integral (Gauss divergence theorem), relation between line and surface integral (Stokes theorem) CO 1 : Find derivatives using various difference formulae CO 2 : Understand the process of numerical integration CO 3 : Solvesimultaneous linear systems of equations CO 4 : Understand iterative methods
	ADVANCED NUMERICAL	 CO 4 : Apply cayley- hamilton theorem to problems for finding the inverse of a matrix and higher powers of matrices without using routine methods CO 5 : Learn the properties of inner product spaces and determine orthogonality in inner product spaces CO 1 : Learn multiple integrals as a natural extension of definite integral to a function of two variables in the case of double integral/three variables in the case of triple integral. CO 2 : Learn applications interms of finding surface area by double integral and volume by triple integral and volume by triple integral and curl of avector and vector identities. CO 4 : Evaluate line, surface and volume integrals. CO 5 : understand relation between surface and volume integrals (Gauss divergence theorem), relation between line and surface integral (Stokes theorem) CO 1 : Find derivatives using various difference formulae CO 2 : Understand the process of numerical integration CO 3 : Solvesimultaneous linear systems of equations

SEMESTER VI	LONG TERM INTERNSHIP
	 CO 2 : Understand mobius function, euler quotient function, the mangoldt function , liouville's function, the divisor functions and the generalized convolutions. CO 3 : Understand euler's summation formula, application to the distribution of lattice points and the applications to μ (n) and λ (n) CO 4 : Understand the concepts of congruencies, residue classes and complete residues systems. CO 5 : Comprehend the concept of quadratic residues mod p and quadratic non residues mod p.