

CHAITANYA DEGREE & PG COLLEGE FOR WOMEN

AFFILIATED TO ANDHRA UNIVERSITY

CHAITANYA NAGAR, OLD GAJUWAKA, VISAKHAPATNAM-530026

B.Sc HONOURS CHEMISTRY

Paper	Paper Name	Outcomes After completion of the course the student		
		should be able to		
SEMESTER I				
COURSE 1	ESSENTIALS AND APPLICATIONS OF MATHEMATICAL, PHYSICAL AND CHEMICAL SCIENCES	 CO 1 :Apply critical thinking skills to solve complex problems involving complex numbers, trigonometric ratios, vectors, and statistical measures. CO 2 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations CO 3 : To Explain the basic principles and concepts underlying a broad range of fundamental areas of chemistry and to Connect their knowledge of chemistry to daily life. CO 4 :Understand the interplay and connections between mathematics, physics, and chemistry in various applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. CO 5 : To explore the history and evolution of the Internet and to gain an understanding of network security concepts, including threats understanding of network security concepts, including 		
COUDSE 2		threats, vulnerabilities, and countermeasures.		
COURSE 2	ADVANCES IN MATHEMATICAL, PHYSICALAND CHEMICAL SCIENCES	 CO 1 :Explore the applications of mathematics in various fields of physics and chemistry, to understand how mathematical concepts are used to model and solve real-world problems. CO 2 :To Explain the basic principles and concepts underlying a broad range of fundamental areas of physics and to Connect their knowledge of physics to everyday situations. 3. Understand the different sources of renewable energy and their generation processes and advances in nanomaterials and their properties, with a focus on quantum dots. To study the emerging field of quantum communication and its potential applications. To gain an understanding of the principles of biophysics in studying biological systems. Explore the properties and applications of shape memory materials. CO 3 :Understand the principles and techniques used in computeraided drug design and drug delivery systems, to understand the fabrication techniques and working principles of nanosensors. Explore the effects of chemical pollutants on ecosystems and human health. CO 4 : Understand the interplay and connections between mathematics, physics, and chemistry in various advanced applications. Recognize how mathematical models and physical and chemical principles can be used to explain and predict phenomena in different contexts. 		

		CO 5 :Understand and convert between different number systems, such as binary, octal, decimal, and hexadecimal. Differentiate between analog and digital signals and understand their characteristics. Gain knowledge of different types of transmission media, such as wired (e.g., copper cables, fiber optics) and wireless (e.g., radio waves, microwave, satellite).
		SEMESTER II
COURSE 3	GENERAL AND INORGANIC CHEMISTRY	 CO 1 :Understand the structure of atom and the arrangement of elements in the periodic table. CO 2 :Understand the nature and properties of ionic compounds. CO 3 :Identify the structure of a given inorganic compound. CO 4 : Explain the existence of special types of compounds through weak chemical forces. CO 5 : Define acids and bases and predict the nature of salts.
	PRACTICAL GENERAL AND INORGANIC CHEMISTRY	 CO 1 :. Understand the basic concepts of qualitative analysis of inorganic simple salt. CO 2 : Use glassware, equipment and chemicals and follow experimental procedures in the laboratory CO 3 : Apply the concepts of common ion effect, solubility product and concepts related to qualitative analysis
COURSE 4	INORGANIC CHEMISTRY- I	 CO 1 : Understand the basic concepts of p-block elements. CO 2 : Explain the concepts of d-block elements CO 3 : Distinguish lanthanides and actinides. 4. Describe the importance of radioactivity.
	PRACTICAL	 CO 1: Understand the basic concepts of inorganic preparations. CO 2: Use glassware, equipment and chemicals and follow experimental procedures in the laboratory CO 3: Apply the properties of various elements for the preparation of inorganic compounds.
		SEMESTER III
COURSE 5	FUNDAMENTALS IN ORGANIC CHEMISTRY	 CO 1 : Understand and explain the differential behaviour of organic compounds based on fundamental concepts learnt. CO 2 : Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved. CO 3 : Learn and identify many organic reaction mechanisms . CO 4 : Correlate and describe the stereo-chemical properties of organic compounds and reactions.
	PRACTICAL Organic Qualitative analysis	 CO 1 : Use glassware, equipment and chemicals and follow experimental procedures in the laboratory CO 2 : Determine melting and boiling points of organic compounds CO 3 : Understand the application of concepts of different organic reactions studied in theory part of organic chemistry
COURSE 6	ORGANIC CHEMISTRY	 CO 1 : Understand the concept of SN1andSN2and SNimechanisms. CO 2 : Describe the reactivity of alcohols and phenols. CO 3 : Achieve the skills required to propose various mechanisms

[
		CO 4 : Apply the concepts for synthesising various oxygen
		containing organic compounds 5. Interconvert the monosaccharides.
	PRACTICAL	CO 1 : How to use glassware, equipment and chemicals and follow
	Organic preparations	experimental procedures in the laboratory.
		CO 2 : How to calculate limiting reagent, theoretical yield, and
		CO 7 a llave to a sufference and the sector stack size as including
		reflux distillation, recrystallization, vacuum filtration.
		$\mathbf{CO4}$: How to critically evaluate data collected to determine the
		identity, purity and percent yield of products and to summarize
		findings in writing in a clear and concise manner
COURSE 7	ρηλείζαι	CO 1 : Understand the ideal and non ideal behaviour of solutions
COURSE /	CHEMISTRY - I	CO 2 . Determine the melecular mass of non-veletile solutors.
		CO Z : Determine the molecular mass of non-volatile solutes.
		CO 3 : Discuss the basic concepts of Photochemistry.
		CO 4 : Apply the principles of electrical conductivity.
		CO 5 : Explain the importance of emf and its applications.
	PRACTICAL	CO1 : Use of glassware, equipment and chemicals and follow
	PHYSICAL	experimental procedures in the laboratory.
	CHEMISTRY -I	CO 2 : Understand and apply the concepts of solutions practically.
		CO3 : Apply concepts of electrochemistry in experiments.
COURSE 8		CO 1 : Apply IUPAC nomenciature for Coordination compounds
		of coordination compounds
		CO 2 Evaluation compounds.
		CO 4 : Apply the 18 electron rule
		CO 5 : Discuss the basic concents of thermodynamics
	DDACTICAI	CO 1 . Understand the basic concepts of thermodynamics.
		inorganic mixture
		CO2. Use glassware, equipment and chemicals and follow
		coverimental procedures in the laboratory
		CO_{1} Apply the concentral of common ion effect, colubility product
		and concepts related to qualitative analysis
		SEMESTER IV
COURSE 9	PHYSICAL	CO 1 :Explain the difference between solids liquids and gases in
	CHEMISTRY -II	terms of intermolecular interactions.
		CO 2 :Differentiate ideal and real gases.
		CO 3 : Discuss the basic concepts of two component systems
		CO 4 : Apply the concepts of adsorption.
		CO 5 : Understand the basic concepts of crystallography.
	PRACTICAL	CO 1: Use glassware, equipment and chemicals and follow
	Organic Preparations	experimental procedures in the laboratory
		CO 2 : Apply concepts of surface chemistry in experiments.
		CO 3 : Be familiar with the concepts & practical applications of
-		Surface tension and viscosity of liquids.
COURSE 10	GENERAL AND	CO 1 : Correlate and describe the stereochemical properties of
	PHYSICAL	organic compounds.
	CHEMISTRY	CO 2 : Explain the biological significance of various elements present
		in the human body.
		CO 3 : Apply the concepts of ionic equilibrium for the qualitative and

		quantitative analysis.
		CO 4 : Determine the order of a chemical reaction.
		CO 5 : Describe the basic concepts of enzyme catalysis.
	PRACTICAL	CO 1 : Use glassware, equipment and chemicals and follow
	Physical Chemistry -	experimental procedures in the laboratory
	Volumetric Analysis	CO 2 : Understand and explain the volumetric analysis based on
		fundamental concepts learnt in ionic equilibria
		CO 3 : Learn and identify the concepts of a standard solutions,
		primary and secondary standards
		CO 4 : Facilitate the learner to make solutions of various molar
		concentrations
COURSE 11	Nitrogen containing	CO 1: Distinguish primary secondary and teritiary amines and
	Organic Compounds	their properties.
	& Spectroscopy	CO 2: Describe the preparation and properties of amino
		acids.
		CO 3: Explain the reactivity of nitro hydrocarbons.
		CO 4 : Discuss heterocyclic compounds with N, O and S.
		CO 5: Apply the concepts of UV and IR to ascertain the
		functional group in an organic compound
	PRACTICAL	CO 1: Use glassware, equipment and chemicals and follow
	Organic preparations	experimental procedures in the laboratory
	and IR Spectral	CO 2: Calculate limiting reagent, theoretical yield, and
	Analysis	percent yield
		CO 3: Engage in safe laboratory practices by handling
		laboratory glassware, equipment, and chemical reagents
		appropriately
		CO 4 : Dispose of chemicals in a safe and responsible
		manner
		CO 5: Perform common laboratory techniques including
		reflux, distillation, recrystallization, vacuum filtration.
		CO 6: Create and carry out work up and separation
		procedures