DEPARTMENT OF ZOOLOGY

TEACHING-LEARNING PEDAGOGY

Pedagogy	P 1	General Lecture Using Blackboard and Chalk
	P ₂	Demonstration
	P ₃	Question and Answer
	P ₄	Slide Share/PPT
	P 5	Group Discussion
	P ₆	ICT (Virtual and online learning)
	P ₇	Assignment (Written)
	P 8	Discovery - Story telling
	P 9	Seminar
	P ₁₀	Guest Lecture
	Px	Problem solving
	PQ	Ouiz
	PT	Written Test
External &	75:2	5
Internal		
Evaluation		

Course: M.sc zoology	Year:I	S	emester:I	
Subject	BIOSYSTEMATICS, BIODIVERSITY AND TAXONOMY			
Units	l. Sustainable utilization of Biodiversity, Equitable sharing &conservation of Biodiversity, Genetic Variations & Non genetic Variations, Genetic Variations & Non genetic Variations.			
	specific categories, Polyty Dimensions of speciation 4. Sustainable utilization of Biodiversity, Genetic V Variations & Non genetic 1. Taxonomic procedur	ypic species, Dimens of Biodiversity, Equ Variations & Non ge variations. es, 2 Taxonomic Key	sions of speciation uitable sharing & enetic Variations, ys, Systematic pu	n, conservation , Genetic
Duration	specific categories, Polyty Dimensions of speciation 4. Sustainable utilization of Biodiversity, Genetic V Variations & Non genetic 1. Taxonomic procedur	ypic species, Dimens of Biodiversity, Equ Variations & Non ge variations. es, 2 Taxonomic Key	sions of speciation uitable sharing & enetic Variations, ys, Systematic pu	n, conservation , Genetic
Duration	specific categories, Polyty Dimensions of speciation 4. Sustainable utilization of Biodiversity, Genetic V Variations & Non genetic 1. Taxonomic procedur International code of	ypic species, Dimens of Biodiversity, Equ Variations & Non ge variations. es, 2 Taxonomic Key Zoological Nomenc basic concepts of b biosystematics Concept conservation of biodi	sions of speciation nitable sharing & enetic Variations, ys, Systematic pu lature(ICZN) niosystematics &t	n, conservation , Genetic ıblications,
	specific categories, Polyty Dimensions of speciation 4. Sustainable utilization of Biodiversity, Genetic V Variations & Non genetic 1. Taxonomic procedur International code of 60hours *To obtain knowledge or *To learn about trends in *To know about species (*To have knowledge on (ypic species, Dimens of Biodiversity, Equ Variations & Non ge variations. es, 2 Taxonomic Key Zoological Nomenc basic concepts of b biosystematics Concept conservation of biodi	sions of speciation nitable sharing & enetic Variations, ys, Systematic pu lature(ICZN) niosystematics &t	n, conservation , Genetic ıblications,
LearningObjectives	specific categories, Polyty Dimensions of speciation 4. Sustainable utilization of Biodiversity, Genetic V Variations & Non genetic 1. Taxonomic procedur International code of 60hours *To obtain knowledge or *To learn about trends in *To know about species (*To have knowledge on (*To learn about taxonom	ypic species, Dimens of Biodiversity, Equ Variations & Non ge variations. es, 2 Taxonomic Key Zoological Nomenc basic concepts of b biosystematics Concept conservation of biodi ic procedures, keys	sions of speciation nitable sharing & enetic Variations, ys, Systematic pu lature(ICZN) siosystematics &t iversity & ICZN	n, conservation , Genetic Iblications, axonomy

	Study Material(Handouts):
	Reference Books:
Resource	1. M. Kato. The Biology of Biodiversity, Springer. 2. J.C. Avise. Molecular Markers, Natural History and Evolution, Chapman &Hall, New York.
Material:	G.G. Simpson, Principle of Animal taxonomy, Oxford IBM Publishing Company.

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 1.1 Definition & basic concepts of biosystematics & taxonomy. 1.2 History, Problems, aims and tasks in taxonomy. 1.3 Importance and applications of biosystematics in biology 1.4 Material basis of biosystematics – Taxonomic attributes. 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
Ш	 2.1 Theories of biological classification (Essentialism, Nominalism, Empirism, Cladism) 2.2 Evolutionary classification. 2.3 Trends in biosystematics- Concepts of different conventional and newer aspects. 2.4 Chemotaxonomy; Cytotaxonomy; Molecular taxonomy; Eco - taxonomy and Behavioral taxonomy 	P1, P3, P6, P4, P2, P5	PX,P6,PT
ш	 3.1 Species Concept - Different species concepts - Typological, Nominalistic, Biological& evolutionary species concept. 3.2 Sub-species and other infra specific categories, Polytypic species. 3.3 Dimensions of speciation- types of lineage changes, production of additional lineage 3.4 Speciation – Allopatric, Sympatric &Parapatric speciation, and factors affecting speciation. 	P1, P2, P3, P6, P4, P5	PQ,PT
IV	 4.1 Sustainable utilization of Biodiversity - Origin of biodiversity, Types of biodiversity & ecosystem, Threats of biodiversity. 4.2 Equitable sharing & conservation of Biodiversity(insitu & ex-situ & gene banks). 4.3 Genetic Variations & Non genetic Variations - Molecular perspectives on conservation of Biodiversity, Hierarchy of categories. 4.4 Origin of reproductive Isolation (Prezygotic&Post zygotic mechanisms). 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
V	 5.1 Taxonomic procedures – taxonomic collections, preservation, curetting of animals and Process of identification. Preservation of specimens. 5.2 Taxonomic Keys - Procedure keys in taxonomy, Types, merits & demerits. 5.3 Systematic publications – different kinds of publications, Process of typication and different Zoological types. 5.4 International code of Zoological Nomenclature (ICZN) - Operative principles, Interpretation and application of important rules, Zoological nomenclature, formation of scientific names of various taxa. 	P1, P2, P3, P5, P6, P4	PQ,PT

Course: M.sc ZOOLOGY	Year	:I	Seme	ster:II	
Subject	BIOSTATICS AND BIOINFORMATICS				
Units	 Introduction to Biostatistics, Data Collection and Presentation, Diagrammatic and Graphical Presentationof data. Measures of central tendency, Measures of dispersion, Probability and distributions, Probability distributions. Proportion data, Count data, Tests of Significance. Analysis of Variance, Correlation, Linear regression Bio informatics 				
Duration			60hours		
LearningObjectives	 LO 1: Recognize importance and value of logical and statistical thinking, training, and approach to problem solving, in the discipline of biological sciences. LO 2: Can condense the given raw data and present diagrammatically & graphically. Calculate the central tendency value of mean, median, mode for the given data. Estimate the deviation amongthe raw data from the central tendency value. LO 3: Identify and choose correct statistical method toanalyze the data LO 4: Lay down the hypothesis and subject it to validationusing significance tests 				
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	20	20	20	20	20
Internal valuation:40marks	4	4	4	4	4

	Study Material(Handouts):
	Reference Books: 1
Resource Material:	 Statistics - Gupta and Kumar Biostatistics - A foundation for analysis in the Health Sciences: W.W. Daniel Biostatistics - J. Zar Bioinformatics for Dummies, Claverie J. M., Notredame C., (2nd Ed., 2007), Wiley Publishing, Inc., New York, USA.
	 Bioinformatics: Sequence and Genome Analysis, Mount, D. W. (2nd Ed., 2001), Cold Spring Harbor Laboratory Press, New York, USA.

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1 Introduction to Biostatistics – Importance of Statistics in biology, Application and Role of biostatistics in modern research. Samples and populations, variables in biology, Accuracy and Precision. Sampling – Characteristics, advantages and methods of sampling and sampling errors.	P1, P2, P3, P4, P5, P6	PQ,P6,PT
	2 Data Collection and Presentation : Types of biological data. Presentation of the data - Frequency distribution tables Preparation of ordered, discrete, continuous and Cumulative frequency distribution tables.		
	 3 Diagrammatic and Graphical Presentation of data Data presentation by diagrams, graphs and curves, Skewness and Kurtosis. 		
	1 Measures of central tendency - Mean, Median and Mode		
П	2 Measures of dispersion: Standard deviation variance and coefficient of variance.	P1, P3, P6, P4, P2, P5	PX,P6,PT
	3 Probability and distributions - Elements of Probability, definition, terminology and laws, independent events. Addition and multiplication rules, conditional probability, example – Bernoulli.		
	 Probability distributions: Binomial and Poisson distribution Normal Distribution: frequency distributions of continuous variables, properties of normal distribution, applications of normal distribution. 		
	1 proportion data- Examples of Proportion data- MPM- sterility testing of medicines- animal toxicity- infection and immunization studies e.g., LD50, ED50, PD50 statistical treatment to proportion data- Chi-square test- goodness of fit to normal distribution.		
	2 Count data - Examples of count data (bacterial cell count, radioactivity count, colony and plaque count, etc.). Statistical treatment to count data-poission distribution- standard error- confidence limits of counts.		
	3 Tests of Significance - Concepts of Null hypothesis		
	and alternative hypothesis, degrees of freedom Level o		
IV	significance, errors of inference.Students t-test, Chi-square tes 1 Analysis of Variance – One Way and Two-Way ANOVA - Applications in biology	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	2. Correlation - Concepts and applications of correlation and regression, Bivariate data, Scatter plot, correlation coefficient (r), properties,	, .	

	 interpretation of r. 3. Linear regression - Fitting of lines of regression, regression coefficient, coefficient of Determination standard curves and interpolations of 		
	unknown y-values thereon		
	1.Introduction to Bioinformatics ; Types of Biological data		
	and its applications using computational tools; Omics studies Major resources of Bioinformatics: Nucleic acid sequence		
	databases NCBI, Genbank, EMBL, EMBL – EBI, Protein		
V	sequence databases: Swiss- prot, PDB, BLAST, PSI- BLAST	P1, P2, P3, P5, P6, P4	PQ,PT
	(Steps involved in use and interpretation of results). Literature databases: PubMed, PubMed Central and Public		
	Library of Sciences.		
	 Databank search- Data mining, data management and interpretation. Multiple sequence alignment of genes and primer designing. Phylogenetic analysis with the program PHYLIP, DISTANCES, and GROWTREE. Basics of designing a microarray, image analysis andnormalization, annotations. 		
	3 Genomics & Proteomics		
	Proteins, secondary structure and folding, RNA seconda		
	rystructures, protein prediction tools- protein secondary		
	structure, molecular modelling, identification and		
	characterization of protein mass fingerprint, world- wide		
	biological databases. Protein modelling, protein structure		
	analysis,		

Course: M.sc Zoology	Year	:I	Seme	ster:I	
Subject	TOOLS AND TECHNIQUES				
Units	 Assays,Electrophories,chromatography,spectrophotometer Microscopy, Principle and applications of different types of microscopes, Electron microscopy, Imageprocessing methods in microscopy, Microtomy,Tissue embedding (paraffin wax), Section cutting, Floatation (water bath), slide mounting, drying (oven or hot plate) and section adhesives, Applications of microtomy in biological studies,Cryotechniques. Media preparation & Sterilization, Inoculation and growth monitoring,Biochemical Mutants and their use, Microbial assays,Cell Culture System,Cell culture techniques. Detection and measurement of different types of radioisotopes,GM (Geiger-Muller) Counter,Scintillation 				
Duration	Counter, Autoradiography, Electrophysiological methods. 60hours				
LearningObjectives	60hours *To obtain knowledge on chemical and biological assays *To learn about microscopy *To know about microtomy&cryotechniques *To have knowledge on microbiological and cell culturetechniques *To learn about radiation techniques and electrophysiological methods				
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	20	20	20	20	20
Internal valuation:40marks	4	4	4	4	4

	Study Material(Handouts):
	Reference Books: *Biophysical& Biochemical Techniques, Wilson K and Walker J.M., *Histological &Histochemical methods: Theory and Practice, Kiernan J.A.Scio Publ. *Histochemistry: Pearse A.G.E, Garfield.
Resource Material:	

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
Ι	 1.1. Assays- Chemical and Biological assay Centrifugation, Working Principle and applications of Centrifugation; differential and density gradient centrifugation, Ultrafiltration. 1.2. Electrophoresis – Electrophoresis, Agarose Ge electrophoresis, 2- D Electrophoresis workingPrinciple structural components and applications of electrophoresis. Analysis of RNA, DNA and proteins by one and two-dimensional gel electrophoresis, Isoelectric focusing gels. 1.3. Chromatography-Working Principle and applications of chromatography, Chromatography Planan chromatography (paper & TLC), Gas Chromatography (GC-MS), High Performance Liquid Chromatography (HPLC), and LC-MS 1.4. Spectrophotometer - UV-visible, fluorescence circular dichroism, absorption spectrophotometry principles and applications, NMR and ESR spectroscopy Molecular structure determination using X-ray diffractior and NMR. Molecular analysis using light scattering different types of mass spectrometry and surface 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
П	 plasma resonance methods. 2.1. Microscopy - Visualization of cells and subcellular components by light microscopy, resolving powers of different microscopes, microscopy of living cells. 2.2. Principle and applications of different types of microscopes - Light, Phase Contrast, Fluorescence microscopy. 2.3. Electron microscopy: SEM, TEM and Atomic force microscopy (AFM). Image processing methods in microscopy: 2.4Image acquisition- 2D image techniques- 3D image techniques- Analysis. 	P1, P3, P6, P4, P2, P5	PX,P6,PT
	 3.1. Microtomy- Working principle and different types o Microtomes.Knives and Blades. 3.2. Tissue embedding (paraffin wax), Section cutting Floatation (water bath), slide mounting, drying (oven of hot plate) and section adhesives. 3.3. Applications of microtomy in biological studies Traditional Histology Technique-Frozen section procedure- Electron Microscopy Technique- Spectroscopy Technique. 3.4. Cryotechniques- History and applications of Cryotechniques for light and electron microscopy Different fixation and staining techniques for EM, freeze- etch and freeze fracture methods for EM. 		

	4.1. Media preparation & Sterilization, Inoculation and		
	growth monitoring.		
	4.2. Biochemical Mutants and their use, Microbia		
	assays.		
	4.3. Cell Culture System - History and scope of anima		
	cell and tissue culture, Advantages and disadvantages of		
	tissue culture, Substrates and Culture media, Treatment o		
	substrate surfaces, Feeder layers, gas phase for tissue		
	culture, Culture media for cells and tissues, Culture		
	procedures.		
	Cell culture techniques - Primary culture and large scale		
	cell cultures, Tissue and Organ		
	4.4. Culture: Primary explanation techniques, Tissue		
	culture (slide, flask and test tube cultures), Organ		
	culture, whole embryo culture, and tissue engineering (artificial skin and artificial cartilage).		
	5.1. Detection and measurement of different types o		
	radioisotopes normally used in biology, incorporation of		
	radioisotopes in biological tissues and cells, molecular		
	imaging of radioactive material, safety guidelines.		
	5.2. GM (Geiger-Muller) Counter, Scintillation Counter		
V	– Principle, Types, Description and Applications.	P1, P2, P3, P5,	PQ,PT
	5.3. Autoradiography – Principle and applications.	P6, P4	v
	5.4. Electrophysiological methods: Single neuror		
	recording, patch-clamp recording, ECG, Brain activity		
	recording, lesion and stimulation of brain		
	pharmacological testing, PET, MRI, fMRI,CAT.		

Course: M.sc Zoology	Year	:I	Seme	ster:I	
Subject	MOLECULAR CELL BIOLOGY				
Units	 Exoskeleton in eukaryotic cell, structure andfunctions of microfilaments, microtubules. Membrane structure and functions, transport across cell membranes, acidification of cell organellesand stomach. 				
Duration	60hours				
LearningObjectives	 Acquire the knowledge about the complex organization in the eukaryotic cell and the molecular mechanisms of cellular processes thatexist in cell types. Design and develop models and Sketch for various types ofcells and cell organelles. Explain and illustrate the ultrastructure and functions of various cell organelles Illustrate the chemistry and organization of cytoskeleton. 				
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	20	20	20	20	20
Internal valuation:40marks	4	4	4	4	4

Study Material(Handouts):

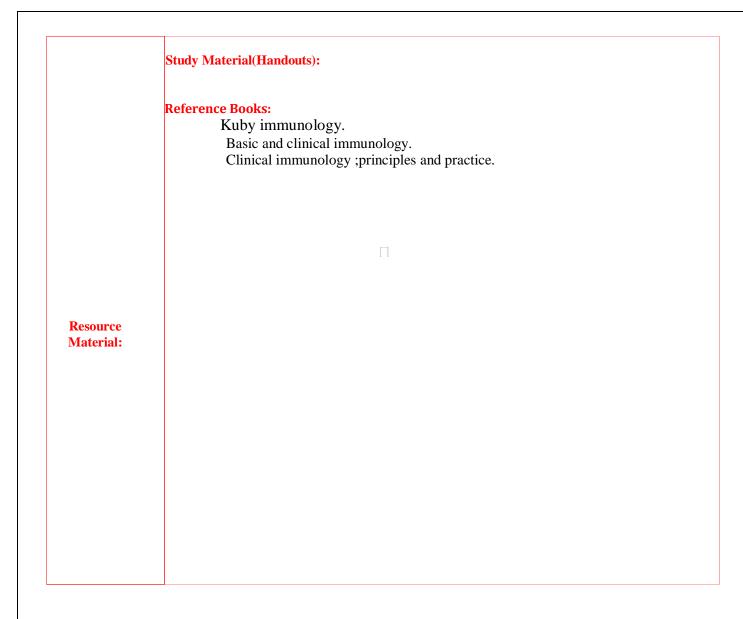
Reference Books:

1. Molecular Cell Biology: J. Darnell. H. Lodish and D. Baltimore, Scientific American Book INC, USA.

- 2. Cell and Molecular Biology: Gerald Karp. (1996), John Wiley and Sons. Inc.
- 3. Molecular Biology: W.H Freeman G: Lodish, H., Ber, A.,

Resource Material:

rial: 5. Wolecular Biology. W.H. Freeman O. Louisi, H., Ber, A., 4. Zipuoskry, L.S., Matsudaira, P., Bahimore, D and Damell J. (2001).


UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
	1.1 Cytoskeleton in eukaryotic cell architecture and		
	function - Recapitulation of the structure		
	of the eukaryotic cell with emphasis on how it functions as a	P1, P2, P3, P4, P5,	PQ,P6,PT
Ι	unit of life.	P6	
	1.2 Structure and dynamics of microfilaments;		
	Cytoskeletal elements in cell shape and		
	motility; their structure and dynamics (Microtubules, Cilia		
	and Flagella). Cell movementsintracellular transport, role		
	of kinesin and dynein.		
	1.3 Microtubules: structure, organization and dynamics		
	Role of microtubules in cell shape and mitosis;		
	Structure and function of intermediate filaments.		
	2.1 Membrane structure and function - Structure of		
	model membrane, lipid bilayer and membrane protein diffusion, osmosis, ion channels.		
	2.2 Transport across cell membranes - Active transport		
п	with suitable examples, membrane pumps, mechanism of sorting and regulation of	P1, P3, P6, P4, P2,	PX,P6,PT
	intracellular transport.	P5	7 - 7
	Cotransport by symporters and antiporters, Membrane		
	potential. Acidification of cell organelles and stomach;transepithelial		
	transport; Maintenance of		
	cellular pH; Cell excitation; Bulk transport: Receptor mediated endocytosis. Intracellular		
	2.3 trafficking.		
III	3.1 Protein sorting and targeting to organelles; Targeting	P1, P2, P3, P6, P4, P5	PQ,PT
	of proteins to lysosomes for degradation; Molecular		
	mechanism of thesecretory		
	pathway; Secretion of neurotransmitters.		
	3.2 Cell signaling – Types and stages of cellsignaling.		
	Cell-Cell interactions: Cellular gap junctions and		
	adhesions; structure and functionalsignificance of		
	plasmodesmata; Mechanisms ofcellular recognition and		
	communication. 3.3Cellular communication: Extracellular		
	matrix, Signal transduction, Intracellular receptor and cell		
	surface receptors; Signaling via G-proteinlinked receptors		
	(PKA, PKC, CaM kinase);Overview of various cellular		

Wingless, JAKSTAT etc.; Enzyme link	edreceptor signaling		
pathways; Network and cross-talk betv	veen different signa		
mechanisms; regulation of sig	naling pathways		
Programmed	,8 F , -		
cell death. 4.1 Cell division and Cell Cycle - C and meiosis; chromosome labeling analysis; cell cycle and control mechanisms; types and regulation of cy	and cell cycle clins, deling; differentia ndle and or; regulation of exi nt at anaphase. amplesfrom yeast. Cyclins' and Cyclin lation and control o ent types of checl	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	ice		
 of checkpoints in cell cycle. UNIT – V 5.1 Organization of Genes and Chromin organization 5.2 Chromosomal organization of ger DNA, Mobile DNA, unique and repetition interrupted genes, gene families. 5.3 Morphological and functional elements chromosomes, structure of chromatin and chromosomes, heterochre euchromatin, transposons. 5.4 Cancer - Genetic rearrangements oncogenes, tumor suppressor genes, cancer and the cell cycle, virus-induce metastasis, interaction of cancer cells w apoptosis, therapeutic interventions 	nes andnon-coding ive DNA, nents ofeukaryotic romatin, s in progenitor cells ed cancer,	P1, P2, P3, P5, P6, P4	PQ,PT

Course: M.sc Zoology	Year	:I	Seme	ster:II	
Subject	Immunology				
Units	 Overview of the immune system. Cells, organs and microenvironment of the immunesystem. Antigens. 				tem.
Duration	60hours				
LearningObjectives	Trace the history and development of immunology. Describe surface membrane barriers and theirprotective function. Explain the important of phagocytosis and naturalkiller cells innate body defense. Describe the role of different types of T-cells and BCells and APCs				
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	10	14	12	12	12
Internal valuation:40marks	8	8	8	8	8

Power point presentation: The structure, function and regulation of genetic material

https://www.slideshare.net/MarwanAlhalabi/genetic-material-66443541

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 Overview of the immune system. Cells, organs and microenvironment of the immune system. Antigens 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
П	 Antibodies Ag Ab. Interactions and Diagnostic techniques. The major Histocompatibility complex and antigen presentation. Antigen presentation. 	P1, P3, P6, P4, P2, P5	PX,P6,PT
III	1.Innate Immunity. 2.Inflammatory response.	P1, P2, P3, P6, P4, P5	PQ,PT
IV	 Receptors and signaling. The complement system. T- cell development. B-cell development. Effector responses. 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
v	 Allergy. Autoimmunity & immunodeficiencydisorders. Transplantation immunology. Cancer and the immune system. 	P1, P2, P3, P5, P6, P4	PQ,PT

Cours E: MSC ZOOLO GY	Year:	ſ	Seme	ster:II	
Subject	GENERAL A	ND COMPAI	RATIVE PHYS	HOLOGY	
Units	 1.Digestive and respiratory system with neural andhormonal control of respiratory system. 2Blood circulation, cascade of biochemicalreactions, cardiovascular system, ECG. 3Excretory system, physiology of urine formation, waste elimination and micturition. 4Nervous system, types of synapses, grossneuroanatomy of the brain and spinal cord, typesof muscles. 5Homeostatic mechanisms of the body, 1. thermoregulation, stress physiology and sense organs. 				
Duration	60hours				
LearningObjectives	 To obtain knowledge on physiology & anatomy of digestive & respiratory systems To learn about physiology & anatomy of circulatory system To know about physiology & anatomy of excretory system To have knowledge on physiology & anatomy of nervous system & muscles To gain knowledge on physiology of homeostasis & stress. 				vsystem system vous system &
Units	U1	U2	U3	U4	U5
Hours Split: Total: 60	20	20	20	20	20
Internal valuation:40marks	4	4	4	4	4

I 1.1. Functional anatomy of digestive system. 1.2. Digestion and absorption. Neuroendocrine regulation of gastro – intestinal movements and secretions Energy balance, BMR 1.3 Respiratory system - Comparison of respiration in different species, anatomical considerations. Breathing movements, transport and exchange of gases, waste elimination. Respiratory quotient, Respiratory Pigments. 1.4 Neural and hormonal control of breathing	UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
1.3 Respiratory system - Comparison of respiration in different species, anatomical considerations. Breathing movements, transport and exchange of gases, waste elimination. Respiratory quotient, Respiratory Pigments.	I	1.2. Digestion and absorption . Neuroendocrine regulation of gastro – intestinal movements and secretions		PQ,P6,PT
		1.3 Respiratory system - Comparison of respiration ir different species, anatomical considerations. Breathing movements, transport and exchange of gases, waste		

	pH.		
П	 2.1. Blood & Circulation - Blood corpuscles hemopoiesis and formed elements, plasma function, blood volume, blood volume regulation, blood groups hemoglobin, hemostasis. 2.2. Cascade of biochemical reactions (factors) involving in blood coagulation. 2.3. Cardiovascular System: Comparative anatomy or heart structure, myogenic heart, specialized tissue. 2.4. ECG – its principle and significance, cardiac cycle heart as a pump, blood pressure, neural and chemical regulation. 	P1, P3, P6, P4, P2, P5	PX,P6,PT
ш	 3.1Excretory system - Comparative physiology of excretion, kidney and its renal units. 3.2. Physiology of urine formation. The significance of Henley's loop.Role of hormones in renal physiology. 3.3. Waste elimination- Formation of nitrogenous excretory products NH3, Urea & Uric acid. 3.4. Micturition, regulation of water balance, blood volume, blood pressure, electrolyte balance, acid-base balance. 	P1, P2, P3, P6, P4, P5	PQ,PT
IV	 4.1 Nervous system - Structure of neuron, Fundamentals of nerve impulse- resting potential, Action potential, role of ion channels. 4.2 Types of synapses- electrical and chemical, gap junctions, ligand gated channels and the Mechanism or synaptic transmission, cholinergic and adrenergic Neuromuscular junction. 4.3 Gross neuro anatomy of the brain and spinal cord central and peripheral nervous system, neural control or muscle tone andposture. 4.4 Types of muscles: Striated, non-striated and cardiac muscles. Ultra-structure of striated muscle. Muscle contraction – Muscle proteins, sliding filament theory. 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
V	 5.1 Homeostatic mechanisms of the body - Concepts of Homeostasis. 5.2 Thermoregulation - Comfort zone, body temperature – physical, chemical, neural regulation acclimatization. 5.3 Stress Physiology - Basic concept of environmenta stress and strain, concepts of elastic and plastic strain, stress resistance, stress avoidance and stress tolerance. Responses to bioticand abiotic factors. 	P1, P2, P3, P5, P6, P4	PQ,PT

response.	

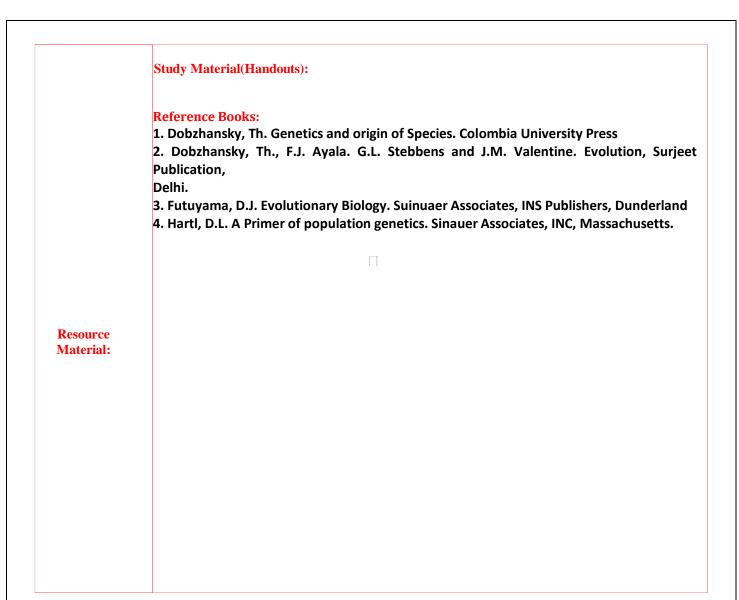
Course: MSC[ZOOLOGY]	Year:	I I	Seme	ster:II		
Subject	MOLECLAR BIOLOGY					
Units	 Chemical composition of DNA ,DNA content and -value paradox. DNA damage ; DNA repair mechanisms ; Enzymesinvolved. DNA replication. RNA Transcription. Protein Translation 					
Duration	60hours					
LearningObjectives	 Utilize the knowledge for undertaking either research positions employability positions in scientific laboratories or acad institutions. Imbibes deep understanding of molecular biology, and can explore diff enzymes involved in DNA replication, the mechanism of replication in prokaryotes and eukaryotes, the basic concept of damage and repair. Imparts knowledge to other stake holders and can bring s awareness on some misconceptions regarding molecular data genetic code To highlight the mechanism of prokaryotic and eukaryotic protein synthes Details of eukaryotic post translational modifications. To study the inhibitors 					
Units	U1	U2	U3	U4	U5	
Hours Split:Total: 60	10	14	12	12	12	
Internal valuation:40marks	8	8	8	8	8	

	Study Material(Handouts):
	Reference Books: . Alberts, B., Bray, D. and Hopkin, K. (2004). Essential Cell Biology. 3rd edition. Garlan Science, U.S.A.
Resource Material:	

UNI T	DES CRI PTI ON	PEDAGOG Y	INTERNAL EVALUATI ON	
	1 1.1 Chemical composition of DNA -			
	Discovery of DNA, Evidence for DNA as the genetic material. Chemical structure of DNA and Base composition, biologically important			
	nucleotides, Watson- Crick model, Supercoiled DNA, Structure of different types of nucleic acids, hydrolysis of nucleic acids. Conformation of nucleic acids: A-, B-, Z-, DNA, t-RNA, micro- RNA. Stability of nucleic acid structure.			
	1.2 DNA content and C - value paradox- Genome size and content over members of different orders and of the same family (Genomes of bacteria, viruses, plasmids, mitochondria and chloroplast). Methods to measure DNA content variation - Various types of DNA sequences (simple sequences, repetitive sequences, nonsense sequences, tandem gene clusters, satellites)			
	1.3 Resolving the paradox by DNA-DNA and DNA-RNAhybridization kinetics, Kinetics of DNA-DNA hybrid izatio			
	n, DNA- RNA hybridization, Cotcurves, Rot curves.			
Π	chemical and biological mutagens; types of damage caused by endogenous and exogenous agents, Molecular mechanisms of mutagenesis – Transition, Transversion, Frame Shift, mis-sense and non-sense mutations	P1, P3, P6, P4, P2,P5	PX,P6,PT	
	2.2 DNA repair mechanisms : Direct reversal, photoreactivation, base excision repair, nucleotide excision repair, mismatch repair, double strand break repair, SOS repair; Recombination: Homologous, non-homologous and site-specific recombination.			
	2.3 Enzymes involved ; Types of topoisomerases and their function in adding or removing super helical structures.			

ш	3.1	Prokaryotic DNA replication - Replication origin and site. Enzymes and accessory proteins and their mechanisms - DNA polymerases, composition and features, replication factors and mechanism of replication, leading strand and lagging strand synthesis, processivity and fidelity and regulation of replication. Extrachromosomal replicons, Replication of single stranded DNA, M13 viral DNA. Link with cell cycle.	P1, P2, P3,P6, P4,P5	PQ,PT	
	3.2	Eukaryotic replication - Replication origin, replication fork, replication initiation complexes and their assembly, licensing factors, DNA polymerases and their composition telomerase and mode of action, replication factors, disassembly of chromatin components and reassembly during replication.			
	3.3	Prokaryotic gene regulation: Lac and Trp operons. Lytic and lysogenic phases of Bacteriophage λ life cycle. Sporulation in Bacillus subtilis. Eukaryotic gene regulation: Role of chromatin in eukaryotic gene regulation. Cis-trans elements, DNA methylation, chromatin remodeling. Environmental gene regulation. RNAi in gene regulation. Epigenetic generegulation			
IV	4.1.	Types of RNA, secondary and tertiary structure and function.			
	4.2.	Prokaryotic and Eukaryotic transcription; Transcription factors and machinery, formation of initiation complex, transcription activator and repressor.	P1,P3,P2,P4 ,P5,P6	PQ,P6,PT	
	4.3.	RNA polymerases, capping, elongation, and termination. RNA processing, RNA editing, splicing, and polyadenylation. Nuclear Export of m-RNA.			
	4.4.	Post transcriptional modifications - RNA splicing and processing (5' capping, Poly Aadenylation), mRNA editing, transcription			
V	5.1	Ribosome structure, Genetic code (codon anticodon recognition, wobble hypothesis, mutations).	P1,P2,P3,P5	PQ,PT	
	5.2	Prokaryotic and eukaryotic translation – Polypeptide synthesis (initiation, elongation, termination), control of eukaryotic translation, Effect of antibiotics on protein synthesis	P6,P4	1 Q,1 1	

5.3 **post-translational modification** of proteins, protein folding, protein sorting; Mitochondrial translation, proteomics and proteomic analysis.


Cours E: MSC ZOOLO GY	Year:	I	Seme	ster:II	
Subject	BIOMOLE	CULES			
Units	1.Biomolecules 2.Carbohydrates 3.Amino acids 4. Biological importance of lipids 5.Structural organization of DNA				
Duration			60hours		
LearningObjectives	 1.To impart knowledge on various biomolecules 2.To learn about chemistry and bioenergetics carbohydrates 3. To have knowledge on biological importance of proteins 4. To know about the role of lipids in biological functions 5. To gain knowledge on Nucleic acids & Enzymes 				
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	20	20	20	20	20
Internal valuation:40marks	4	4	4	4	4

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.1 Biomolecules- chemical composition and bonding , chemical reactivity , ionization of water.	D1 D2 D2 D4 D5	PQ,P6,PT
	1.2 Weak acids and weak bases (pH), buffers: buffering in biological systems, Stabilizing interactions (Van der Waals, electrostatic, hydrogen bonding, hydrophobic interaction,		
	etc.). 1.3 Principles of bioenergetics – Principles and Laws of thermodynamics, reaction kinetics,		
	colligative properties and their applications in biological system : entropy and enthalpy. 1.4 Standard free energy changes standard		

	reduction potentials, reaction.		
II	2.1Carbohydrates- classification of carbohydrates, nomenclature.2.2Reaction of Mono-saccharides- Acid derivatives of Mono-saccharides, amino-sugars, Oligo - saccharides, structure and properties.2.3homo and hetero - polysaccharides, peptidoglycan,glycosaminoglycans, glycoproteins,lycoproteins & other glycoconjugates.Biosynthesis and degradationof glucose and glycogen.	P1, P3, P6, P4, P2, P5	PX,P6,PT
	2.4 Bioenergetics - Glycolysis, oxidative phosphorylation, coupled reaction, group transfer, biological energy transducers.		
Ш	3.1 Amino acids – classification, Peptide bond, 3.2 Proteins – classification, structural organization of proteins, primary structure, secondary structure, tertiary structure,	P1, P2, P3, P6, P4, P5	PQ,PT
	 quaternary structure. 3.3 Conformation of proteins (Ramachandran plot) domains, motifs and folds. Denaturation & renaturation of proteins.Biosynthesis of urea. 3.4 Tissue proteinin health and diseases, collagen-structure and synthesis, abnormal collagens, elastin, keratins,muscle proteins, lens 		
IV	proteins and cataract. 4.1 Biological importance of lipids. Fatty acids: classification, nomenclature.	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	4.2 Simple fats:Triacylglycerol (Triglycerides) – Physical properties. Reactions – Hydrolysis, Saponification,Rancidity. Acid number, Saponification number, Iodine number oxidation, Ketosis, Reichert-Meissl- Wollnyvalue.		
	4.3 Compound lipids: Phospholipids- Lecithin, Phosphatidyl inositol, Cephalins,plasmologens,Glycolipids, Sphingolipids Steroids: Biologically important steroids-cholesterol,Vitamin D, Bile acids, Ergosterol, Terpenes.		

andfunctions. Lipoproteins.	
5.1 Structural organization of DNA (Watson-	
Crick model)-Characteristic features of A,B,C	 PQ,PT
and Z DNA. Structural organization of tRNA	
and micro RNA- stability of proteins and nucleic acids.	
5.2 Protein-nucleic acid interactions-	
Electrostatic interaction, hydrogen bonding	
stacking interactions. DNA binding proteins-	
DNA regulatory proteins, foldingmotifs, finger	
motifs, Zipper motifs, conformation	
flexibilities- Biological roles of nucleotides andnucleic acids.	
5.3 Enzymes: Classification- (I.U.B.system) co-	
enzymes, iso-enzymes, ribozyme. Enzyme	
specificity.Mechanismof action of	
enzymes.Formation of enzyme substrate complex.Various theories.	
5.4 Enzyme kinetics:Michaelis-Menten	
equation. Km value and its significance.Enzyme	
velocity and factors	
influencingenzymevelocity.Enzyme inhibition-	
suicide inhibition and feedback inhibition. Enzyme regulation:Types of regulation,	
Allosteric regulations-Key enzymes, Covalent	
modification.	

Course: M.sc Zoology	Year:II Semester:III				
Subject	POPILATION GENETICS AND EVOLUTION				UTION
Units	 Theories of organic evolution Gene Frequency and Genetic Equilibrium Genetic structure of population Genetics of quantitative traits in populations Molecular Population Genetics 				
Duration			60hours		
LearningObjectives	60hours CO 1: In-depth knowledge into the area of Population genetics. CO 2: It also involves passing across to the students how the principles of Mendelian genetics play a role in Population genetics. CO 3: introduce the principles underlying the genetics of populations CO 4: let the students have an understanding of the implications an conditions under which gene and genotype frequencies change and/or remain the same CO 5: help the students realize the principles underlying the Hardy Weinberg law and its application CO 6: understand the actual forces that drive evolution, sources of variation and the principle of natural selection. CO 7: through understanding of Quantitative genetics and its applications CO 8: the idea of construction of Phylogenetic trees using molecular data.				he principles of opulations nplications and ing the Hardy- on, sources of
Units	U1 U2 U3 U4 U5				
Hours Split: Total: 60	10 14 12 12 12				
Internal valuation:40marks	8 8 8 8 8				

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
	1.1 Theories of organic evolution- Lamarckism, Neo Lamarckism, Darwinism, Neo Darwinism.		
I	Concepts of Variation - Genetic drift, Migration, Selection, Adaptation, Struggle, Fitness and	P1, P2, P3, P4, P5, P6	PQ,P6,PT
	Mutations. 1.2 Natural Selection, the Modern Synthesis, Evolution of		
	populations. 1.3 Origin of unicellular and multicellular organisms,		
	plants and animal - Origin of basic biological		
	molecules, Abiotic synthesis of organic monomers and		
	polymers, Concept of Oparin		
	and Haldane; Experiment of Miller (1953).		
	1.4 The first cell - Evolution of Prokaryotes; Evolution of unicellular eukaryotes; Anaerobic		
	metabolism, photosynthesis and aerobic metabolism.		
	2.1 Gene Frequency and Genetic Equilibrium – Gene pool,		
	gene frequencies and genotype		
	frequencies, Hardy Weinberg Law, conservation of gene		
Π	frequency. Assumptions and Testing	P1, P3, P6, P4, P2, P5	PX,P6,PT
	Hardy-Weinberg principle with population models.	10	
	2.2 Gene evolution - Multigene families, gene duplication		
	and Divergence, Molecular drive.		
	2.3 Speciation and Evolution – Race formation, the		
	species, modes of speciation		
	(allopatric, parapatric, sympatric). Evolutionary processes		
	causing speciation - natural selection, sexual selection, sexual selection, random genetic drift, Muller		
	incompatibility.		
	2.4 Evolutionary genetics of speciation - Evolution of		
	Proteins and nucleotide sequences.		
	Mechanism of reproductive isolation.		
III	3.1 Genetic structure of populations - Optimum phenotypes	P1, P2, P3, P6, P4,	PQ,PT
	and Selection pressure, kinds	P5	1 Q,1 1
	of selection, Fisher's theorem, genetic variability, Canalization,		
	Genetic homeostasis,		
	genetic load, genetic death. Mutational and Segregational		
	load.		
	3.2 Phenotypic Variation		
	3.3 Models explaining the genetic structure of populations 3.4 Factors effecting Human disease frequency		
	4.1 Analysis of quantitative traits, Quantitative traits and		
137	natural selection,	P1, P3, P2, P4, P5,	
IV	4.2 Heritability or Estimation of – Broad sense and narrow	P6	PQ,P6,PT
	sense heritability,		
	4.3 Genotype: Environment interactions		
	4.4 Inbreeding and Heterosis.		

V	 5.1 Molecular phylogeny- Immunological techniques, amino acid sequences, DNA – DNA hybridizations nucleic acid phylogeny. 5.2 Patterns and modes of substitution - Nucleotide substitutions, Evolutionary rate, Molecular clock. 5.3 Phylogenetic trees, construction method, phylogenetic gradualism, punctuated equilibrium, phylogenetic classification, phenetics, cladistics. 5.4 Induced Changes in genetic material - Ionizing and UV radiation, Chemical mutagens, Oxygen and environmental effects, DNA repair, induced mutations in humans. 	P1, P2, P3, P5, P6, P4	PQ,PT
---	--	---------------------------	-------

Course: M.sc Zoology	Year:II		Samaa	40		
Units	DEVELOPMENTAL BIOLOGY1.Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development. Heterogamy in eukaryotes,Comparative account of differentiation of gonads in a mammal and an invertebrate (Snail).2. Production of gametes, Fertilization, Cleavage, blastula formation, embryonic fields, gastrulation and formation of germ layers in animals, embryogenesis. 3. Cell aggregation and differentiation in Dictyostelium, Axes and pattern formation in Drosophila, amphibia and chick, Organogenesis, Post embryonic development. 4. Collection and cryopreservation of gametes and embryos, Multiple ovulation and embryotransfer technology (MOETT), Transgenic animals and knockouts, Embryonic stem cells.					
Duration			60hours			
LearningObjectives	*To impart knowledge on basic concepts of development *To learn about gametogenesis, fertilization & early development * To have knowledge on morphogenesis and organogenesis *To know about the advanced technologies *To gain knowledge on assisted reproduction technologies & contraceptive measure					
Units	U1	U2	U3	U4	U5	
Harris Caller Tatali (0	10	14	12	12	10	
Hours Split:Total: 60	- •				12	

Study Material(Handouts):

Reference Books:

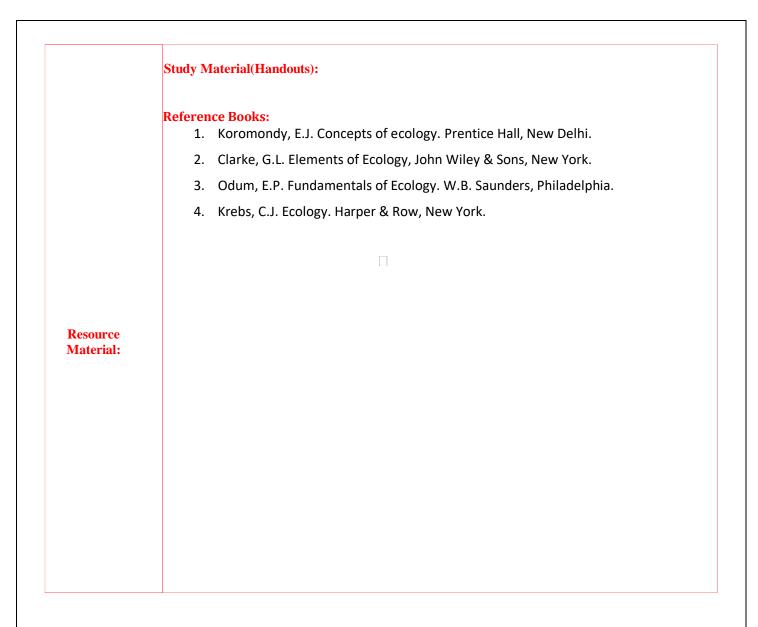
1. Gilbert, S.F. Developmental Biology. 10th Edition, Sinauer Associated Inc., Massachusetts

2. Balinsky, B.I. Introduction to Embryology. Saunders, Philadelphia

3. Berril, N.J. and Karp, G.Development Biology. McGraw Hill, New York

Resource Material:

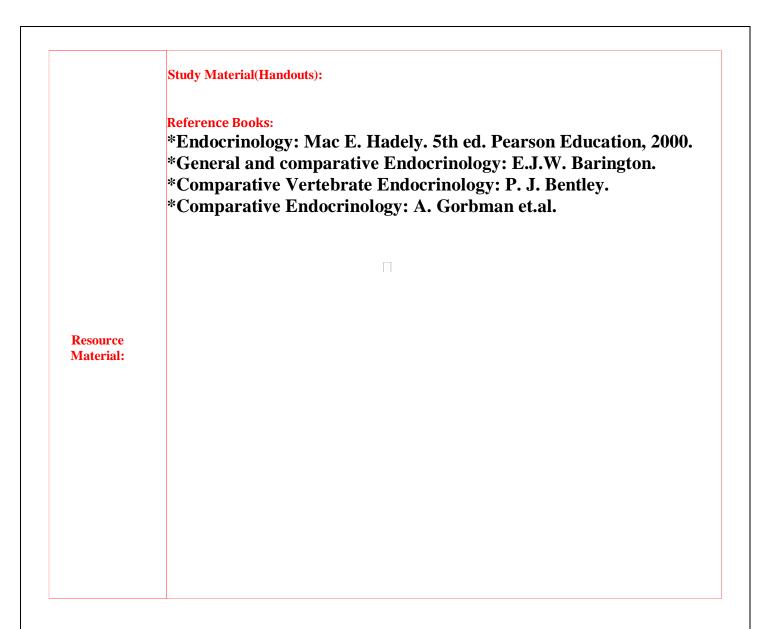
UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
Ι	 1.1 Potency, commitment, specification, induction, competence, determination and differentiation; morphogenetic gradients; cell fate and cell lineages; stem cells; genomic equivalence and the cytoplasmic determinants; imprinting; mutants and transgenics in analysis of development. 1.2 Heterogamy in eukaryotes. 1.3 Comparative account of differentiation of gonads in a mammal and an invertebrate (Speil) 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
	(Snail).		
п	2.1 Production of gametes – Spermatogenesis, Spermiogenesis (Sperm structure, Semen composition and formation; assessment of	P1, P3, P6, P4, P2,	
Π	sperm functions), Oogenesis and Vitellogenesis (Ovarian follicular growth and differentiation) cell surface molecules in sperm - egg	P5	PX,P6,PT
	recognition in mammals (Rodents), Acrosomal reaction, zygote formation. 2.2 Fertilization - Pre-fertilization,		
	Biochemistry of fertilization, Post-fertilization 2.3 Cleavage, blastula formation, embryonic fields, gastrulation and formation of germ		
III	 layers in animals, embryogenesis. 3.1 Cell aggregation and differentiation in Dictyostelium, Axes and pattern formation in Drosophila, amphibia and chick. 	P1, P2, P3, P6, P4, P5	PQ,PT
	3.2 Organogenesis – vulva formation in Caenorhabditiselegans, eye lens induction, limb development and regeneration in vertebrates;		
	differentiation of neurons, 3.3 Post embryonic development - larval		
	formation, metamorphosis; environmental regulation of normal development; sex determination.		
IV	4.1 Collection and cryopreservation of gametes and embryos. 4.2Multiple ovulation and embryotransfer	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	technology (MOETT) (Superovulation, In vitro oocyte maturation, In vitrofertilization, embryo		
	transfer). 4.3 Transgenic animals and knockouts:		


	Production & Applications. 4.4 Embryonic stem cells.		
V	 5.1 Assisted reproduction technologies – Ovulation induction- In vitro fertilization- Pre- implantation genetic diagnosis- Mitochondrial replacement therapy- gamete intrafallopian transfer- Reproductive surgery, treating- cryopreservation. 5.2 Embryo sexing and cloning, Screening for geneticdisorders, ICSI, Cloning of animals by nuclear transfer 5.3 Teratological effects of Xenobiotics. 5.4 contraception: Barrier methods- hormonal birth control- intrauterine devices (IUDs) - Surgical sterilization - behavioral methods - Immunocontraception. 	P1, P2, P3, P5, P6, P4	PQ,PT

Course: M.sc Zoology	Year	II:	Seme	ster:III	
Subject	AQUACULTURE				
Units	 1. 1.General Principles, Scope, Cultural &Socio-economic basis. 2. Types of culture system 3. Biological characteristics of aquaculture systems 4.Reproduction and genetic selection. 				
Duration			60hours		
LearningObjectives	 1. 1.To Impart knowledge on basis of aquaculture. 2. To learn about construction & management of aquaculture ponds. 3. To have knowledge on aquaculture of different shell fish & fin fish. 4. To know about the water quality & feed management. 5. To gain Knowledge on post-harvest technology. 			•	
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	10	14	12	12	12
Internal valuation:40marks	8	8	8	8	8

	Study Material(Handouts):
	 Reference Books: Pillay, T.V.R. 1993.Aquaculture: Principles and practices. Fishing news books. Blackwell Scientific Publications. Jhingran, V.G 1993. Fish and fisheries of India. Hindustan Publishing Corporation, New Delhi
	П
Resource Material:	

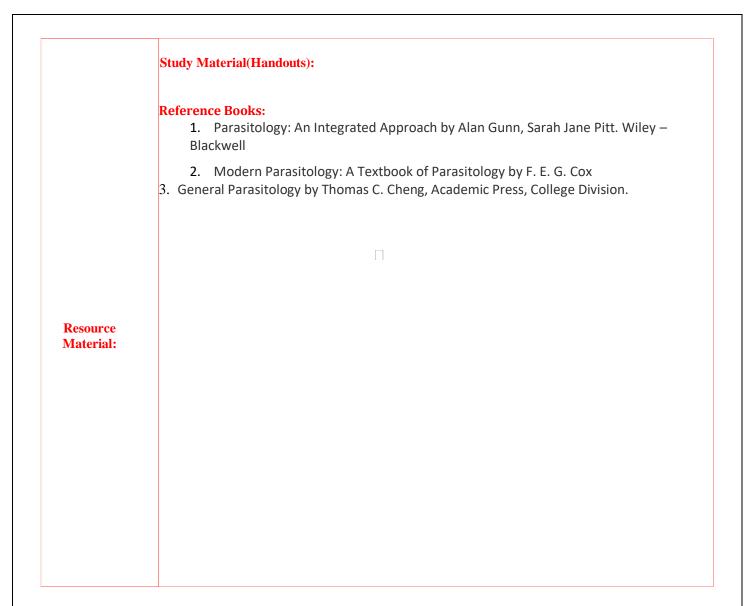
UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 .General Principles, Scope, Cultural & Socio-economic basis. Types of culture system Biological characteristics of aquaculture systems Reproduction and genetic selection. 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
п	 1.selection of site for aquaculture 2. pond preparation and management 3. pre stockingmanagement 4. post stocking management 	P1, P3, P6, P4, P2, P5	PX,P6,PT
III	1.Freshwater culture 2.Brakish water culture	P1, P2, P3, P6, P4, P5	PQ,PT
IV	 3.Mariculture 4.Integrated farming 1.Hydrology of ponds 2.water quality management 3.feed management 4.feed formulation and processing 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
V	 Post harvest technology Methods to supress bacterial growth Different kinds of aquaculture and productivity Environmental impact of aquaculture 	P1, P2, P3, P5, P6, P4	PQ,PT


Course: M.sc Zoology	Year	:II	Seme	ster:III	
Subject			ES OF ECOLO		ERVATION
Units	 Ecology, Factors affecting ecosystem, Habitat and Ecological Niche. Ecosystem, Productivity, Energy flow and trophic dynamics, Climate change . Attributes of population, Population energetics and interactions, Population growth, Population Regulation. Population Regulation, Life history strategies, Succession and climax. Terrestrial and aquatic communities, Biodiversity & Conservation Biology, Conservation Biology, Biogeography 				
Duration			60hours		
LearningObjectives	Biology,Conservation Biology, Biogeography 60hours *Provide students with the scope to develop knowledge base covering attributes of the environment. * Help students to understand the structure and function of an ecosystem, habitat ecology and Ecological niche. * Enable them to understand population growth attributes.		about the gation,and find answers to gards to human iciency to find		
Units	U1	U2	U3	U4	U5
Hours Split: Total: 60	10	14	12	12	12
Internal valuation:40marks	8	8	8	8	8

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.1 Ecology: Basic concepts, scope, multidisciplinary nature and relevance; Ecosystem concept, organization and significance; Biosphere concept, organization and significance; Cybernetic nature of ecosystems. Ecosystem structure; ecosystem function.	P1, P2, P3, P4, P5, P6	PQ,P6,PT
	1.2 Factors affecting ecosystem: Major environmental factors (biotic and abiotic) influencing organisms in various ecosystems; Concept of limiting factors; Liebig's law of the minimum; Shelford law of tolerance.		
	1.3 Habitat and Ecological Niche – Concept of habitat and niche; niche width and overlap niche width and overlap; fundamental and realized niche; resource partitioning; character displacement		
П	2.1 Ecosystem - Nature of ecosystem, bio- geochemicalcycles,resilienceofecosystem,ecosystem management.Thebiosphere,biomesandimpactofclimate on biomes.	P1, P3, P6, P4, P2, P5	PX,P6,PT
	2.2 Productivity : Primary productivity; concept, methods of estimation, world patterns of primary productivity and Man's exploitation of primary productivity; Secondary productivity; concept, methods of estimation, world patterns of secondary productivity, and man's exploitation of secondary productivity.		
	2.3 Energy flow and trophic dynamics: Energy flow in ecosystems; Concept of trophic dynamics and trophic cascade; Food chains, food webs and trophic levels; Ecological pyramids; Energy transfer; Ecological efficiencies; Biogeochemical cycles (water, oxygen, carbon, nitrogen, phosphorus and Sulphur) and man's impact.		
	2.4 Climate change - Environmental Stresses and their management, global climatic pattern, global warming, atmospheric ozone, acid and nitrogen deposition, coping with climatic variations.		
III	3.1 Attributes of population: Population growth, density; Density dependent and density independent factors; Natality, mortality, biotic potential, carrying capacity; Survivorship and age structure; Seasonal population fluctuation.	P1, P2, P3, P6, P4, P5	PQ,PT
	3.2 Population energetics and interactions : Population energetics; Patterns of population distribution, aggregation and Allee's principle; Isolation; Population interactions: competition (allelopathy), parasitism, predation, herbivory, protocooperation, commensalisms, mutualism.		

IV	 3.3 Population growth – Growth of organisms with non-overlapping generations, exponential growth, Verhulst – Pearl logistic growth model, Stochastic and time lag models of population growth, stable age distribution, population growth projection using Leslie Matrix. Lotka- Volterra equations. 3.4 Population Regulation- Extrinsic and Intrinsic Mechanisms: Case studies in population dynamics (examples from fisheries). Ecological Modelling: Fundamentals of constructing models and testing them 4.1 Community ecology: Community concept; Nature of communities; community structure and attributes; levels of species diversity and its measurement. Individualistic and 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	organismic nature of communities; Qualitative and quantitative characters of community; Methods of studying vegetation;		
	 Species diversity and its measurement. 4.2 Life history strategies- Evolution of life history traits, longevity and theories of ageing, energy apportionment between somatic growth and reproduction, reproductive strategies, optimal body size, r and K selection. Demography construction of Life Tables and their demographic application. 		
	4.3 Succession and climax : Types of succession, trends of succession; Models of succession; Mechanisms; Concept of climax community; theories on climax, ecotone and edge effect; Ecotypic differentiation; r and k strategies.		
	5.1 Terrestrial and aquatic communities: Plant and animal communities in forest, grassland, desert and mangrove ecosystems; High altitude communities; Zonation and stratification of plant and animal communities.		
V	5.2 Biodiversity & Conservation Biology – Overview of global environmental change, Biodiversity status monitoring and documentation, Major drivers of biodiversity change.		PQ,PT
	5.3 Conservation Biology : Principles of conservation, major approaches to management, Indian case studies on conservation, management strategy (Project Tiger, Biosphere reserves).		
	5.4 Biogeography- Major terrestrial biomes; theory of island biogeography; biogeographical zones of India. Faunal diversity and biodiversity Hotspots in India.		

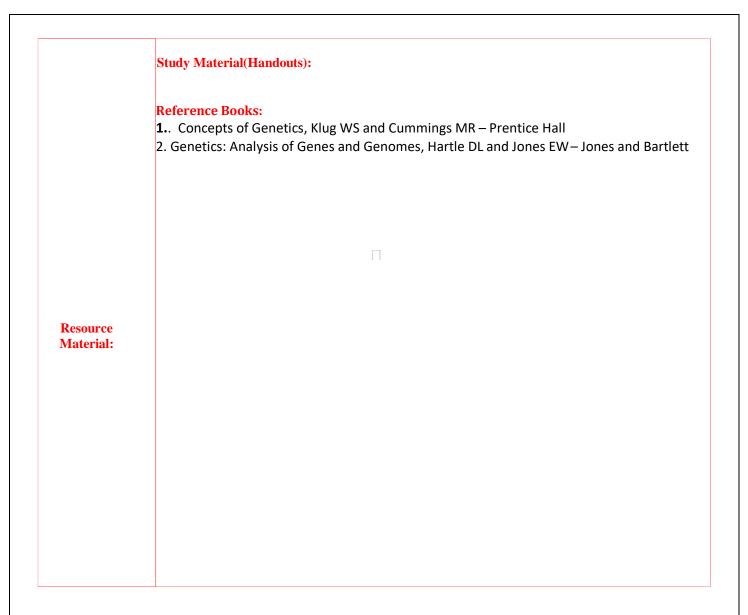
Course: M.sc Zoology	Year:II		Semes	ster:IV	
Subject			NOLOGY AND		CHAVIOUR
Units	1.Scope and s hormone ac Ad,nohypophy	significan ction, Sial horn Gland, Adrenal crine syne regula , Phys nd Thym crinology l actions liscrete a ysiology ting, and s of learn	ice of endocr Hypothalamo nones. Testis- C Cortex, Role o ystem in ation of rep siological act us glands. in health and of adrenal drenal gland, in vertebrato Amniocentesi ing, Approac	inology, Ma -hypophysia Organization of parathorn invertebrat roductive p ions of ha diseases. medullary Comparativ es, Hormon s. hes and met	echanism of al System, a, Ovary- mone. te groups, processes & ormones of hormones, ve aspects of nes in IVF,
Duration			60hours		
LearningObjectives	*To impart kn *To learn a vertebrates *To have kn invertebrates *To know abo hormones *To gain knov	bout pl owledge out the c	nysiology of on neuro-end comparative p	endocrine docrine me ohysiology o	glands in chanisms in
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	10	14	12	12	12
Internal valuation:40marks	8	8	8	8	8



UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.1 Scope and significance of endocrinology- Concept of neurohormones and neurotransmitters.1.2Mechanism of hormone action: Protein Hormones- Membrane receptors- G-proteins 		PQ,P6,PT
П	 2.1 Thyroid Gland- biosynthesis of thyroid hormones- Control of secretion- Physiological roles- Steroid hormone biosynthesis and pathways. 2.2Testis- Organization- Physiological roles of androgens- Inhibin- Ovary- Organization-Physiological roles of Estrogen, Progesterone and Relaxin- Inhibin. 2.3Adrenal Cortex- Organization- Control of mineralocorticoid and glucocorticoid secretions- Physiological roles of glucocorticoid and mineralocorticoid- Adrenal Medulla: Catecholamine biosynthesis, release and its physiological roles. 2.4Role of parathormone: Calcitonin and vitamin D in calcium homeostasis- Endocrine Pancreas: Biosynthesis and physiological actions of Insulin and Glucagon 	P1, P3, P6, P4, P2, P5	PX,P6,PT
ш	3.1 Neuro-endocrine system in invertebrate groups - neuro-endocrine mechanisms of moulting, growth and reproduction in crustaceans & insects-hormonal control of	P1, P2, P3, P6, P4, P5	PQ,PT

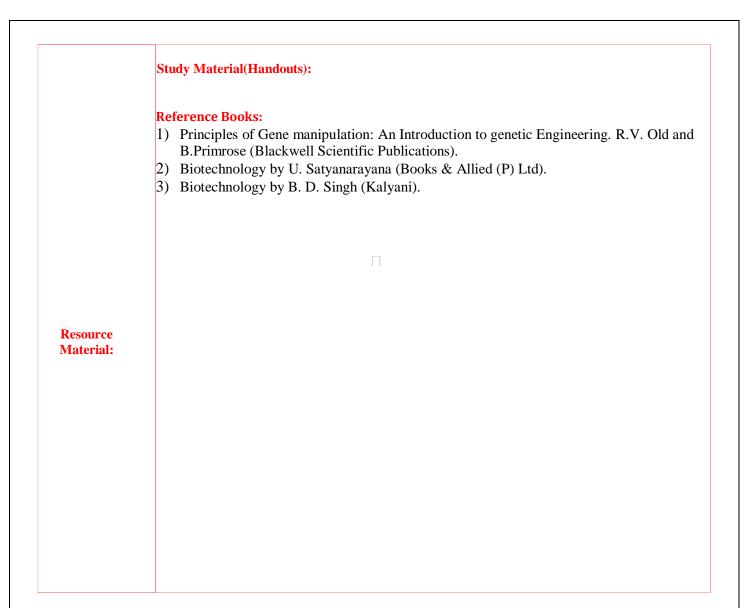
 3.2 Neuroendocrine regulation of reproductive processes & gametogenesis 3.3 Physiological actions of hormones of Parathyroid and Thymus glands. 3.4 Role of endocrinology in health and diseases. 4.1 Physiological actions of adrenal medullary hormones - Importance of adrenocortical and adrenomedullary interaction. renin-angiotensin system, hormonal control of water and electrolyte balance, Catecholamine biosynthesis, its storage and release mechanism. 4.2 Evolution of discrete adrenal gland; Synthesis of corticosteroid, structural diversity of glucocorticoids among vertebrates, role of glucocorticoid in gluconeogenesis. 4.3 Comparative aspects of endocrine physiology in vertebrates – Structure and Function of Gastrointestinal hormones or gut hormones; Gastrin family hormones, Secretin glucagon family, GI regulatory peptides - Physiological actions of these hormones. 4.4 Hormones in IVF, pregnancy testing, and Amniocentesis.

	5.1 Neural basis of learning, memory, cognition, sleep and arousal; Biological clocks.	
	5.2 Approaches and methods in study of	
	behaviour; Proximate and ultimate causation;	
V	Altruism and evolution-Group selection, Kin P1, P2, P3, P5, P6,	PQ,PT
	selection, Reciprocal altruism.	v
	5.3 Development of behavior; Social	
	communication; Social dominance; Use of space	
	and territoriality; Mating systems, Parental	
	investment and Reproductive success; Parental	
	care;	
	5.4 Aggressive behaviour; Habitat selection and	
	optimality in foraging; Migration, orientation	
	and navigation; Domestication and behavioral	
	changes.	


Course: M.sc Zoology	Year	:11	Seme	ster:IV	
Subject		PARASITO	LOGY		
Units	 .Introduction to Parasites. 8. Protozoa and Cestoda 9. Trematoda and Nematoda 10. Beyond humans: Parasites of veterinary importance. Immune reactions to Parasitic infections & Pathology 				
Duration			60hours		
LearningObjectives	 An overview of biological basis of parasitic lifestyles. It includes host responses and parasite evasion of host defense mechanisms. The students are exposed to knowledge on parasites that not only infect humans, but also animals. It emphasizes on the evolutionary aspect of host-pathogen interactions leading to host specificity. The students learn about transmission, epidemiology, diagnosis, clinical manifestations, pathology, treatmentand control of major parasites. It includes through knowledge on the major parasitic groups like Helminthes and protozoans. The course has been structured in a way that the students assimilate the classroom knowledge for applied aspects of parasitology and publichealth. The student gets an insight into immune mechanisms exhibited by parasites present in various habitats and representing different groups. 		y infect n gnosis, pups of		
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	10	14	12	12	12
Internal valuation:40marks	8 8 8 8 8				8

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.1 Introduction to Parasitology - Scope of the subject definition and concept of parasitism and parasites Types of animal associations, parasite and types of parasitism (Commensalism, Symbiosis Predaterism, Phoresis and Mutualism). Hyper parasitism.	P1. P2. P3. P4. P5.	PQ,P6,PT
	1.2 Types of Hosts : Final, intermediate, paratenic and reservoir hosts with examples, Vectors, natural and unnatural, host parasite relationship and types o parasites		
	1.3 Host-parasite relationship- Effects of parasitism to their host - Mechanical action. Hosts response to parasitic infection. Specificity of parasites in relation to species, breed, sex of host and location in the host (organ specificity).		
	1.4 Factors influencing Pathogenesis – Host factors and Parasite factors. Mechanisms by which parasites induce pathology. Modes of transmission of parasites and methods of dissemination of infective stages of parasites	5	
Ш	2.1 Salient morphological features of diagnostic importance, life cycle, transmission pathogenesis, symptoms, epidemiology, diagnosis and general control measures including treatmen of: Entamoebahistolytica, Giardia intestinalis Trichomonastenax. Trypanosomagambiense, T cruzi. Leishmaniadonovani, L. tropica, P. vivax Plasmodium sps their Differential diagnosis and Toxoplasma gondai	P1, P3, P6, P4, P2, P5	PX,P6,PT
	2.2 Free living amoebae: Hartmanella, Acanthamoeba and Naegleria		
	2.3 Cestodes: Diphyllobothriumlatum, Taeniasolium, T. saginata, Hymenolepis nana, Echinococcusgranulosus		
	2.4 Classification of Parasitic Protozoans and Cestodes up to families		
Ш	3.1 Animal Breeding - Principles, Structure of livestoch breeding – poultry, sheep and cattle.Marker -assisted selection. Artificial insemination (AI) techniques, in vitro fertilization. Preservation of endangered species. Germplasm bank.	C P1, P2, P3, P6, P4, P5	PQ,PT
	3.2 Production of transgenic animals and their applications: Mice, sheep and fish. Molecular farming and animal cloning.		

IV	 33 Somatic cell nuclear transfer in humans – Legal and ethical aspects. Potential applications of transgenic animals – Animal models for diseases and disorders. 4.1 Types of fermentation and fermenters – Solid state and liquid-state (stationary and submerged) fermentations, Microbial growth kinetics in batch, continuous and fed-batch (eg. baker's yeast) fermentation process. 4.2 Microbial production of industrial products - Microbial preparation of Tempeh, Miso, Yogurt, Probiotics, Single cell protein. Microbiology and production of alcoholic beverages (wine & beer), organic acids (acetic and gluconic acids), amino acids (glutamic acid, lysine and tryptophan), vitamins (riboflavin and vitamin A) & enzymes (protease & lipase). 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
V	5.1 Bioremediation - Bioremediation using naturally occurring microorganism - removal of spilled oil and grease deposits. Bioremediation using Genetically Engineered Microbes (GEM) – detection of PAHs in the soil, treating oil spills, and for sequestering heavy metals. Bioleaching – Microbial recovery of metals and acid mine drainage.	P1, P2, P3, P5, P6, P4	PQ,PT
	5.2 Biosensors - Biosensor to detect environmental pollutants (In situ bioremediation of both soil and ground water contamination).Bioremediation of contaminated soil and contaminated surface waters (pits, ponds and lagoons). Treatment of toxic wastes before they reach environment, Conservation of soil city wastes, SPCI's strategy on biotreatment.		
	 5.3 Biofertilizers- Blue green algal fertilizers – Azolla, Anabaena, symbiotic association. Sea weed fertilizers. Mycorrhizalbiofertilizers, bacterial fertilizers. Biopesticides in agricultural production. 		


Course: M.sc Zoology	Year	:II	Seme	ster:IV	
Subject	GENETICS AND MOLECULAR CYTOGENETICS				
Units	UNIT – II DNA : UNIT – III Chro UNIT – Iv geno	I Genetics & Concept of gene II DNA Structure and Chromosome Organisation III Chromosome segregation and Genome mapping Iv genome mapping stratigies -V Human Cytogenetics			
Duration	60hours				
LearningObjectives	Genetics a LO 2: LO 3:	60hours cs and Cytogenetics course will open up several avenues for students in terms of research and employability. summarize the principles of inheritance as discovered by Mendel, and show how subsequent genetic research led to the development of linkage analysis. Genetics has made extensive use of model organisms, many of which will be used to teach this course. By observing genetic mutations in Drosophila, students can correlate phenotype with genotype, understand genetic interaction and their molecular basis.		y. liscovered by esearch led to misms, many of erving genetic e phenotype	
Units	U1	U2	U3	U4	U5
Hours Split:Total: 60	10	14	12	12	12
Internal valuation:40marks	8 8 8 8 8				

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.1 Concept of gene - Evolution of gene concept: Mendel to Beadle and Tatum; Complementation test as an operational definition of gene, cistron concept. Fine structure of gene: exons, introns, UTRs; Split genes; pseudogenes; overlapping genes and multi- gene families	P1, P2, P3, P4, P5,	PQ,P6,PT
	1.2 Mendelian Principles and Extension studies - Dominance, Segregation, Independent assortment. Allele, multiple alleles, pseudo-alleles. Extensions of Mendelian principles - Codominance, incomplete dominance, gene interactions, pleiotropy, genomic imprinting, penetrance and expressivity, phenocopy, linkage and crossing over, sex linkage, sex limited, and sex influenced characters.		
	1.3 Extra chromosomal inheritance - Inheritance of Mitochondrial and chloroplast genes, maternal inheritance.		
П	Molecular Structure of DNA - A, B, Z and triplex DNA structure, Central dogma, DNA as genetic material; Histones, DNA, nucleosome morphology and higher-level organization. DNA compaction, nucleosome, 10 nm "beads-on-a-string" fibre, nuclear matrix in chromosome organization and function. Repetitive and unique sequence, Satellite DNA, DNase hypersensitive regions, DNA methylation patterns & epigenetic effects.	P1, P3, P6, P4, P2, P5	PX,P6,PT
	2.2 Chromosome organization - Structure of eukaryotic chromosomes, Metaphase chromosome, centromere, kinetochore, telomere and its maintenance. Heterochromatin and euchromatin; position effect, variegation, functional states of chromatin and alterations in chromatin organization, chromatin remodelling.		
	2.3 Holocentric chromosomes and supernumerary chromosomes, Giant chromosomes polytene and lamp brush chromosomes, Chromosomal domains (matrix, loop domains) and their functional significance.		
ш	3.1 Linkage, recombination and crossing over - Crossing over as a measure of genetic distance, Recombination mapping with two-point and three-point test cross, recombination frequency and genetic map distance, Detection of linkage in experimental organisms: Tetrad analysis in fungi, balancer chromosome technique in Drosophila, centromere mapping in ordered tetrads in Neurospora, cytogenetic mapping in Drosophila, detection of linked loci by pedigree analysis in humans.	P5	PQ,PT

IV	 3.2RegulationofGeneExpression:General introduction to gene regulation in eukaryotes at transcriptional and posttranscriptional levels; Regulationofgeneactivityinlacandtrpoperons of E. coli.; Chromatin organization and gene expression, transcription factors, enhancers and silencers, non-coding genes. 3.3MechanismsofsexdeterminationandDosageCompensati on: Human, Drosophila and C. elegans. 4.1 Genome mapping strategies: Overview of genome mapping - Genetic analysis with biochemical markers (Saccharomyces cerevisiae), DNA markers for genetic mapping - Restriction fragment length polymorphisms (SSLPs), Single nucleotide polymorphisms (SNPs), Linkage analysis 	P1, P3, P2, P4, P5, P6	PQ,P6,PT
	 is the basis of genetic mapping, Gene mapping by human pedigree analysis, Genetic mapping in bacteria. 4.2 Physical Mapping- Restriction mapping, Fluorescentinsitu hybridization. 4.3 Human Genome Project (HGP): Strategies involved, outcome and applications. Ethical, legal and social issues involved (FLS). 		
	involved (ELSI 5.1 Human genetics - Human karyotype - Karyotyping, Chromosomal banding and staining Techniques, Chromosomal nomenclature.		
V	5.2 Chromosomal abnormalities – Cytogenetic implications (chromosomal non-disjunction), structural abnormalities : Deletions, Duplications, Inversion and Translocations. Numerical abnormalities : Autosomal and Sex chromosomal syndromes, Sex determination in <i>Caenorhabditiselegans, Drosophila melanogaster</i> and mammals. Dosage compensation in <i>Drosophila</i> <i>melanogaster</i> and mammals.	P1, P2, P3, P5, P6, P4	PQ,PT
	5.3 Molecular cytogenetic techniques in human chromosome analysis - Spectral karyotyping (SKY); Chromosome Painting; Comparative genomic hybridization (CGH), GISH, FISH, DNA Finger Printing and Flow Cytometry.		

Course: M.sc Zoology	Year	:II	Seme	ster:IV		
Subject		BIOTECH	NOLOGY AND		ILOGY	
Units	 Recombinant DNA technology & Genetic engineering. Gene Amplification & Sequencing Animal breeding, production of transgenic animals and somatic cell nuclear transfer in humans. Microbial fermentations. Bioremediation 					
Duration			60hours			
LearningObjectives	 For understand concept of rDNA technology and genetic engineering To acquaint the student with the application of recombinant technology To impart knowledge on gene amplification and sequencing techniques Connect the knowledge acquired with its application in the field of health and agriculture Utilize the acquired knowledge for the improvement of animals and crops To understand the role of microbe in fermentation and their industrial usage. To show the student how Bioremediation can be an effective tool for monitoring pollutants present in different habitats. To understand the importance of biosensors and biofertilizers for the management of crops and toxicants. 			abinant encing in the field of of animals and ad their e an effective abitats.		
Units	U1	U2	U3	U4	U5	
Hours Split: Total: 60	10 14 12 12 12					
Internal valuation:40marks	8 8 8 8 8					

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 1.1Outlines of recombinant DNA technologyRestriction endonucleases, Isolation of gene fragments using restriction endonucleases, c-DNA, PCR, RACE PCR. 1.2 Cloning vectors – plasmids, bacteriophages, cosmids, Ti - plasmid. Expression vectors, CRISPR- Cas 9 technology. 	P1, P2, P3, P4, P5, P6	PQ,P6,PT
	 Construction of gene libraries –cDNA library, genomic library, YAC, BAC library. Cloning strategies – shot gun experiments, cDNA cloning in bacteria. Screening of libraries 1.3 Chemical synthesis of genes : Ligation of fragments. RFLP, restriction maps Mapping genes –chromosomal walking, chromosomal jumping. 		
	2.1. Gene Amplification - Basic PCR and its		
	modifications (inverse PCR, anchored PCR, PCR		
П	for mutagenesis, asymmetric PCR); Application of PCR in biotechnology and genetic engineering.	P1, P3, P6, P4, P2, P5	PX,P6,PT
	2.2 DNA sequencing methods - Major landmarks in		
	DNA sequencing : Maxam-Gilbert sequencing,		
	Chain-termination methods, Advanced methods		
	and de novo sequencing, Shotgun sequencing,		
	Next-generation sequencing, Massively Parallel		
	Signature Sequencing (MPSS), Polony		
	sequencing, pyrosequencing, Illumina (Solexa)		
	sequencing, SOLID sequencing, Ion		
	semiconductor sequencing, DNA nanoball		
	sequencing, Heliscope single molecule		
	sequencing, Single molecule real time (SMRT)		
	sequencing.		
	2.3 Genomics and its application to health and		
	agriculture, including gene therapy.		
III	3.1 Animal Breeding - Principles, Structure of livestock breeding – poultry, sheep and cattle.Marker -assisted selection. Artificial insemination (AI) techniques, in vitro fertilization. Preservation of endangered species. Germplasm bank.	P1, P2, P3, P6, P4, P5	PQ,PT
	3.2 Production of transgenic animals and their		
	applications: Mice, sheep and fish. Molecular farming and animal cloning.		
	33 Somatic cell nuclear transfer in humans – Legal and ethical aspects. Potential applications of transgenic animals – Animal models for diseases		

and disorders.		
4.1 Types of fermentation and fermenters – Solid state and liquid-state (stationary and submerged) fermentations, Microbial growth kinetics in batch, continuous and fed-batch (eg. baker's yeast) fermentation process.	P1, P3, P2, P4, P5, P6	PQ,P6,PT
4.2 Microbial production of industrial products - Microbial preparation of Tempeh, Miso, Yogurt, Probiotics, Single cell protein. Microbiology and production of alcoholic beverages (wine & beer), organic acids (acetic and gluconic acids), amino acids (glutamic acid, lysine and tryptophan), vitamins (riboflavin and vitamin A) & enzymes (protease & lipase).		
4.1 BIOREMEDIATION - Bioremediation using naturally occuring microorganism (removal of spilled oil and grease depostis),Bioremediation using GEM (treating oil spills,dection of PHAs,sequestring heavy metals)		
4.2 BIOLEACHING - Microbial recovery of metals & acid mine drainage.	P1, P2, P3, P5, P6, P4	PQ,PT
4.3 BIOSENSORS -Biosensor to detect environmental pollutants(In situ bioremediation of both soil,ground water contamination)		
4.4 BIOFERTILIZERS - Bluegreen algal fertilizers- Azolla &Anabaena symbiotic association.Sea weed,Mycorrhizal,Bacterial fertilizers.Biopesticide in agricultural production.		