LINEAR ALGEBRA B.Sc II year

Topics

- Characteristic Vector
- Characteristic Value
- Characteristic Polynomial
- Characteristic Equation
- > Cayley Hamilton Theorem

Characteristic Vector,

Characteristic Value of a matrix

- Any non-zero vector X is said to be a characteristic vector of a square matrix A if there exists a scalar such that AX = λX.
- Here A can be a mxn matrix and X can be a n * 1 matrix.
- Then λ is said to be a characteristic value of the matrix A corresponding to the characteristic vector X .
- Also X is said to be characteristic vector corresponding to the characteristic value λ of the matrix A.
- Characteristic vectors are sometimes called Proper or Latent or Eigen vectors.

Characteristic Polynomial

 Let A=[a_{ij}] n×n λ and any indeterminate scalar. The matrix A - λI is called the characteristic matrix of A, where I is the unit matrix of order n.

• Also
$$|A - \lambda I| = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & \dots \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

a polynomial in λ of degree n, is called the characteristic polynomial of A .

Characteristic Equation

- The equation |A λI| = o is called the characteristic equation of the matrix A and its roots (the values of λ) are called characteristic roots or eigenvalues.
- It is also known that every square matrix has its characteristic equation.

Cayley Hamilton Theorem

Statement :

Every square matrix satisfies its characteristic equation.

Proof:

Let A be a n- rowed square matrix ie., Let A = $[a_{ij}]_{n*n}$. The characteristic equation of A is given by

$$|A - \lambda I| = f(\lambda) = \begin{vmatrix} a_{11} - \lambda & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} - \lambda & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} - \lambda \end{vmatrix}$$

$$= (-1)^{n} [\lambda^{n} + a_{1}\lambda^{n-1} + a_{2}\lambda^{n-2} + \dots + a_{n}]$$

where a_{i} 's \in F.

Since all the elements of (A- λ I) are at most of Ist degree in λ .

All the elements of adj (A- λ I) are polynomials in λ of degree (n-1) or less and hence adj (A- λ I) can be expressed a matrix polynozmial in λ .

Let adj $(A-\lambda I) = B_0 \lambda^{n-1} + B_1 \lambda^{n-2} + \dots + B_{n-2} \lambda^1 + B_{n-1}$ where B_0, B_1, \dots, B_{n-1} are n- rowed square matrices. Now $(A-\lambda I)$ adj $(A-\lambda I) = |A - \lambda I|I$ $[\because A(adjA) = = |A|I]$

$$\Rightarrow (A - \lambda) (B_o \lambda^{n-1} + B_1 \lambda^{n-2} + \dots + B_{n-2} \lambda^1 + B_{n-1})$$

= (-1)ⁿ [$\lambda^n + a_1 \lambda^{n-1} + a_2 \lambda^{n-2} + \dots + a_n$]I
Comparing coefficients of like powers of λ , we obtain
 $-B_o = (-1)^n I$,
 $AB_o - B_1 = (-1)^n a_1 I$,
 $AB_1 - B_2 = (-1)^n a_2 I$,

 $AB_{n-1} = (-1)^n a_n I.$

.....

Premultiplying the above equations successively by and adding Aⁿ, Aⁿ⁻¹,.....,I and adding,

we obtain

 $O = (-1)^{n} A^{n} + (-1)^{n} a_{1} A^{n-1} + (-1)^{n} a_{2} A^{n-2} + \dots + (-1)^{n} a_{n} I$ $\Rightarrow (-1)^{n} [A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + \dots + a_{n} I] = 0$ $\Rightarrow A^{n} + a_{1} A^{n-1} + a_{2} A^{n-2} + \dots + a_{n} I = 0$

A satisfies its characteristic equation. (O is zero matrix)

∴Every square matrix satisfies its characteristic equation

THE END