

BSC IInd YEAR

INTERNAL COMPOSITION OR VECTOR ADDITION :

Let V be any non-empty set.

(+) be any operation (or addition) defined on the set V

If $\forall \alpha, \beta \in V \implies \alpha + \beta \in V$ then + is called an internal composition on the set V.

EXTERNAL COMPOSION OR SCALAR MULTIPLICATION :

Let V and F be two non-empty sets. (•) be any operation defined on the set V. Then $\forall a \in F$ and $\alpha \in V \implies a_{\bullet}\alpha \in V$ is called an external composition on the set V.

DEFINITION:

Let V be a non-empty set whose elements are called vectors. Let F be any set whose elements are scalars where (F,+,.) is a Field

The set V is said to be a vector space if

1. There is defined an internal composition in V called addition of vectors denoted by +, for which

(V.+) is an abelian group.

2. There is defined an external composition in V over F, called the scalar multiplication in which

 $a \in F$ and $\alpha \in V \implies a = \alpha \in V$

3. The above two compositions satisfy the fallowing postulates

- i. $a(\alpha+\beta) = a\alpha+b\beta$
- ii. $(a+b)\alpha = a\alpha+b\alpha$
- iii. $(ab)\alpha = a(b\alpha)$
- iv. $1.\alpha = \alpha$

THEOREM :

Let V(F) be a vector space. A non-empty set W \subseteq V. The necessary and sufficient condition for W to be a subspace of V is a ,b ϵ F and $\alpha,\beta \in V \Longrightarrow a\alpha+b\beta \epsilon$ W

PROOF:

Let V(F) be a vector space and W V

NECESSARY CONDITION:

Suppose that W is a subspace of V.

Claim: W(F) is a subspace of V (F)

W (F) is a vector space

 \therefore a \in F, $\alpha \in$ W \Rightarrow a $\alpha \in$ W and b \in F, $\beta \in$ W \Rightarrow b $\beta \in$ W

Now $a\alpha \in W$, $b\beta \in W \implies a\alpha + b\beta \in W$

SUFFICIENT CONDITION:

Let W be the non-empty subset of V satisfying the given condition i.e., $a,b\in F$ and $\alpha,\beta \in W \implies a\alpha + b\beta \in W \dots (1)$ Taking a=1,b=-1 and $\alpha,\beta \in W \implies 1\alpha + (-1)\beta \in W$ $\implies \alpha \cdot \beta \in W \quad [\because \alpha \epsilon W \implies \alpha \epsilon V \text{ and } 1\alpha = \alpha \text{ in } V]$ (H \subseteq G and $a,b\epsilon H \implies aob^{-1}\epsilon$ H then (H, o) is subgroup of (G, 0)) \Rightarrow (W,+) is a subgroup of the abelian group (V,+) \implies (W,+) is an abelian group Again taking b=0 $a, 0 \in F$ and $\alpha, \beta \in W \Rightarrow a\alpha + 0\beta\epsilon W \Rightarrow a\alpha\epsilon W \implies a \in F \text{ and } \alpha \in W \implies a\alpha \in W$ \therefore W is closed under scalar multiplication The remaining postulates of vector space hold in W as W \subseteq V

:: W(F) is a vector subspace of V (F).

THEOREM: A non-empty set W is a subset of vector space V(F). W is a subspace of W if only if $a \in F$ and $\alpha, \beta \in V \implies a\alpha + \beta \in W$.

PROOF:

Let V(F) be a vector space and W $\subseteq V$

NECESSARY CONDITION:

Suppose that W is a subspace of V.

Claim: W(F) is a subspace of V (F)

W (F) is a vector space

 $\therefore \ a \in F , \alpha \in W \Longrightarrow a \alpha \in W$

Further $a\alpha \in W$, $\beta \in W \Longrightarrow a\alpha + \beta \in W$

SUFFICIENT CONDITION:

Let W be the non-empty subset of V satisfying the given condition

i.e., $a \in F$ and $\alpha, \beta \in W \implies a\alpha + \beta \in W$ (1) Now taking a=-1, for $\alpha \in W$ we have, $(-1)\alpha + \alpha \in W \implies \overline{O} \in W$ (2) Again $a \in F, \alpha, \overline{O} \in W \implies a\alpha + \overline{O} \in W \implies a\alpha \in W$ \therefore W is closed under scalar multiplication (3) $-1 \in F$ and $\alpha, \overline{O} \in W \implies (-1)\alpha + \overline{O} \in W \implies -\alpha \in W$ \therefore Inverse exists in W The remaining postulates of vector space hold in W as $W \subseteq V$

 \therefore W(F) is a vector subspace of V (F).

THEROEM:

Let V(F) be a vector space. A non-empty set W V. The necessary and sufficient condition for W to be a subspace of V are (1) $\alpha \in W$, $\beta \in W \implies \alpha - \beta \in W$ (2) $a \in F$, $\alpha \in W \implies a\alpha \in W$

PROOF:

Let V(F) be a vector space

NECESSARY CONDITION:

(1) W is a vector subspace of V

 \Rightarrow W is a subgroup of (V,+) \Rightarrow (W, +) is a group

 \Rightarrow if $\alpha, \beta \in W$ then $\alpha - \beta \in W$

(2) W is a subspace of V

 \Rightarrow W is closed under scalar multiplication \Rightarrow for a \in F, $\alpha \in$ W ; a $\alpha \in$ W

SUFFICIENT CONDITION:

Let W be a nonempty subset of V satisfying the two given conditions

 $\begin{array}{l} \alpha \in W \ , \alpha \in W \Longrightarrow \alpha - \alpha \in W \Longrightarrow \overline{O} \in W \\ \therefore \text{The zero vector of V is also the zero vector of W} \\ \overline{O} \in W, \ \alpha \in W \Longrightarrow \overline{O} - a \in W \Longrightarrow (-\alpha \in W) \\ \Rightarrow \text{ additive inverse of each element of W is also in W} \\ \text{Again } \alpha \in W, \ \beta \in W \Longrightarrow \alpha \in W, \ (-\beta) \in W \Longrightarrow \alpha - (-\beta) \in W \\ \implies \alpha + \beta \in W \end{array}$

i.e., W is a closed under vector addition

 $W \subseteq V$, all the elements of W are also the elements of V.

Thereby vector addition in W will be associative and commutative.

This implies that (W,+) is an abelian group.

Further by (2), W is closed under scalar multiplication and the

other postulates of vector space hold in w as $W \subseteq V$

 \therefore W itself is a vector space under the operations of V.

```
Hence W (F) is a vector subspace of V(F)
```

