Course Outcomes: M.Sc., Organic Chemistry

Semester I:

S.NO	NAME OF	COURSE OUTCOMES
	SUBJECT	
1	General Chemistry	The Students will be able toCO1: Learn and understand the selection rules and criteria for molecules to exhibit rotational and IRspectroscopy.CO2: Understand the Classical and quantum mechanical theories of Raman spectroscopy and basic concepts of electronic
		applications
2	Inorganic Chemistry	The student will be able toCO1: Acquiretheknowledgeon applications of VSEPR, ValenceBond and Molecular orbital theoriesin explaining thestructures of simple molecules and role of p andd orbitals in pi bonding.CO2: Understandthe concept of MO theory to square planar(PtCl4 2-) and Octahedral complexes(CoF6 3- , Co(NH3)6 3+).And Walsh diagram for H2O moleculeCO3: Apply theknowledgeandunderstandingofUnderstand theOrgel and Tanabe-Sugano diagramsfor d1 -d 9 octahedral and tetrahedral transition metal complexesof 3d series tonewly preparedmetal complexesCO4: Develop interest in the areas of magnetic properties oftransition and inner transition metalcomplexes – spin and orbital moments – quenching of orbitalmomentum by crystal fields incomplexes.CO5: To understand the concept of Term symbols and Electronicspectra and Magnetic properties ofcomplexes.
	Inorganic Chemistry (Practical)	The student will be able to CO1: To develop an insight into the preparation of inorganic complexes CO2: To understand the process of preparation of inorganic complexes CO3: To acquire skills in the preparation of inorganic complexes

3		The student will be able to
	Organic chemistry	 CO1: Acquire the knowledge of aliphatic nucleophilic substitution, neighbouring group mechanism by O,N,S and non classical carbo cations. compounds and chemistry of natural products CO2: Understand aliphatic electrophilic substitution reactions. CO3 To know about stereochemistry and conformational analysis. CO4: Develop interest in the areas of chemistry of heterocyclic compounds CO5: To Learn the chemistry of natural products – terpenoids, steroids and concept of Lipids.
4	Organic chemistry (Practical)	The student will be able to CO1: To develop an insight into the preparation of organic compounds in various reactions CO2: To understand the process of preparation of organic through various reactions CO3: To acquire skills in the preparation of organic compounds, their separation, purification and identification.
5	Physical chemistry	The student will be able toCO1: Explain the basic concepts of Thermodynamics and itsapplicationsCO2: Understand the concepts of thermodynamics of solutions.CO3: To understand the principle of micellisation.CO4: Understand the various kinetic theories, measurements ofreaction rates.CO5: Learn experimental techniques for measuring the kineticsof fast reactions andhomogenous catalyzed reactions.
6	Physical chemistry (Practical)	The student will be able to CO1: To maintain laboratory ethics, safety and cleanliness CO2: To Preparation and standardization of solutions CO3: To have hands-on experience/practical knowledge in performing Physical chemistry experiments CO4: To develop skills on handling instruments like conductometry and perform different types of acid-base titrations CO5: To plot accurate graphs of the desired scale for the calculations of Langmuir and Freundlich isotherms CO6: To Prepare the solution of the desired concentration and the desired volume in Cuprammonium cation.

Semester II:

S.NO	NAME OF SUBJECT	COURSE OUTCOMES
1	General chemistry	 The student will be able to CO1 Students will have the idea of wave function and understand the uncertainty relations CO2 Students will learn how to solve the Schrodinger Eq. rigorously for model systems CO3 Students will be able to understand and be able to explain the origin of quantized energy levels CO4 Students will learn to apply concepts from physics and methods from mathematics to derive and understand the properties of chemical systems that arise from quantum mechanical models for the structure of atoms and molecules CO5 They will be able to understand and explain the differences between classical and
2	Inorganic Chemistry	quantum mechanicsThe student will be able toCO1 To give a basic and updated knowledge for the studentson metal clusters,Organometallic chemistry of transition metalsCO2 To discuss the preparation and structures of andfunctional aspects of metal clustersCO3 Design new coordination compounds based on afundamental understanding of theirelectronic propertiesCO4 To discuss basics principles of reaction mechanism inmetal complexesCO5 To understand the concept of Term symbols andElectronic spectra and Magneticproperties of complexes
	Inorganic Chemistry (Practical)	The Students will be able to CO1 To have hands-on experience/practical knowledge in Inorganic chemistry experiments CO2 To develop skills on estimations of analyte by volumetrically CO3 To determine analyte by Gravimetrically CO4 To study the photochemical reactions

3	Organic Chemistry	The Students will be able to
5	organic chemistry	CO1 Acquire the knowledge of aromaticity, aromatic
		nucleophilic substitution
		CO2 Understand reactive intermediate and
		name reactions,
		CO3 Apply the knowledge and understanding of molecular
		rearrangementsn of electron deficient carbon, Nitrogen and
		Oxygen
		CO4 Develop interest in the areas of spectroscopy-
		Principles o9f UV, IR,NMR and Mass spectroscopy.
		CO5: To gain knowledge about
		alkaloids, peptides, proteins and nucleic acids
	Organic	The Students will be able to
	Chemistry(Practical)	CO1 To develop an insight into the identification of organic
		compounds by systematic
		analysis
		CO2 To understand the process of identification of organic
		compounds by systematic
		analysis
		CO3 To acquire skills in the identification of organic
		-
4	District of Champingtons	compounds by systematic analysis The Students will be able to
4	Physical Chemistry	
		CO1 Explain the basic concepts of Crystallography
		CO2 Understand the types of polymers and analyze various
		physical properties of
		polymers
		CO3 Understand the concepts of electrochemistry and
		theories like Debye Huckel theory
		CO4 Understand the basic concept and theories of electrode-
		electrolyte interface
		CO5 Learn principles of photochemistry and various
		photochemical reactions
	Physical Chemistry	The Students will be able to
	(Practical)	CO1 To have hands-on experience/practical knowledge in
		performing Physical chemistry
		experiments
		CO2 To develop skills on handling instruments like
		Potentiometry and perform different
		types of acid-base and redox titrations
		CO3 To determine specific rotations and percentage of to
		optically active substances by
		polarimetrically
		CO4 To study the stability of complex ion and stranded free
		energy change and
		equilibrium constant by potentiometry
L		equinorium constant of potentionieury

Semester III:

S.NO	NAME OF SUBJECT	COURSE OUT COMES
1	Organic Reaction Mechanism	The student will be able to CO 1: Acquire the knowledge of reactions and mechanisms of radical Substitution CO 2: Understand reactions and mechanisms of Elimination reactions and their stereo chemistry. CO 3: Apply the knowledge and understanding of Addition reactions to carbon- carbon , carbon- hetero atom multiple bonds. CO 4: Acquire the knowledge of reactions and mechanism Pericyclic reactions and their classification. CO5: Understand the concept of photochemistry of carbonyl compounds, unsaturated systems and aromatic compounds.
2	Organic spectroscopy	 The Student will be able to CO 1: Acquire the knowledge of UV spectra of aromatic and hetero cyclic compounds and conformations of substituted cyclo hexanones. CO 2: Understand the characteristic vibrational frequencies of various functional groups by Infrared spectroscopy. CO 3: Apply the knowledge and understanding the principle of NMR and itsd applications. CO 4: Develop interest in the areas of Mass Spectrocopic techniques and fragm, entations of various functional groups. CO5: To acquire the knowledge on structural elucidation of organic compounds using UV, IR, NMR, Mass spectral data.
3	Organic Synthesis	The Student will be able to CO 1: Acquire the knowledge of formation of C-C via enolates, enamines, organo metallic reagents. CO 2: Understand formation of C=C bonds , pyrolytic syn eliminations. CO 3: Apply the knowledge and understanding the introduction of organic polymers, properties and their classification. CO4: To understand the concept of reactions of unactivated C-H bonds and their synthetic applications. CO5: Develop interest in the areas of Asymmetric synthesis, Diels alder reaction.
4	Organic Chemistry of Natural Products	The Student will be able to CO 1: Acquire the knowledge of isolation, structural elucidation,

Practical 1:Multistage synthesis	 stereochemistry, synthesis and biological properties of selected antibiotics, CO 2: Understand isolation, structural elucidation, stereochemistry, synthesis and biological properties of selected terpenes CO 3: Apply the knowledge and understanding isolation, structural elucidation, stereochemistry, synthesis and biological properties of alkaloids CO 4: Develop interest in the areas of isolation, structural elucidation, stereochemistry, synthesis and biological properties of Flavonoids CO5: Understand isolation, structural elucidation, structural elucidation,
Practical 2:chromatograph	 Able to separate the non-volatile mixtures using column chromatography. Understand the column chromatography. Understand the paper chromatography to

Semester IV:

S.NO	NAME OF SUBJECT	OUT COMES
1	MODERN SYNTHETIC METHODOLOGY IN ORGANIC CHEMISTRY	The student will be able to CO 1: Acquire the knowledge of various modern synthetic methods. CO 2: Understand multicomponent reactions and meta thesis CO 3: Apply the knowledge and understanding of metal and non metal based oxidations CO4: To understand the concept of Reduction - homogeneous and heterogeneous catalytic hydrogenation. CO5: Develop interest in the areas of green chemistry, nano materials and phase transfer catalysis.
2	ORGANIC SPECTROSCOPY AND STRUCTURE DETERMINATION OF NATURAL PRODUCTS	The Student will be able to CO 1: Acquire the knowledge of 13C NMR spectroscopy CO 2: Understand Heteronuclear coupling and ESR spectroscopy. CO 3: Apply the knowledge and understanding of NMR instrumentation and 2D NMR techniques. CO 4: Develop interest in the ORD and CD spectroscopy CO5: To gain knowledge on structural determination of natural products by spectroscopy
3	DESIGNING ORGANIC SYNTHESIS AND SYNTHETIC APPLICATIONS OF ORGANO- BORANES AND SILANES	The Student will be able to CO 1: Acquire the knowledge of the disconnection approach and its principles. CO 2: Understand the synthetic strategies for one group disconnection CO 3: Apply the knowledge and understanding of disconnection approach, synthetic strategies in two group disconnection CO 4: Develop interest in the areas of the organo boranes preparations and their synthetic applications. CO5: Understand the preparations and synthetic applications of organosilanes.
4	DRUG DESIGN AND DRUG CHEMISTRY	The Student will be able toCO 1: Acquire the knowledge of drugs, theirclassification, drug metabolism and drugdevelopment, Structure Activity Relationship indrugsCO 2: Understand drugs, their classification, drugmetabolism of antineoplastic drugsCO 3: Understand drugs, their classification,

	drug metabolism of cardiovascular drugs CO4: Acquire the knowledge of oral hypoglycaemic drugs. CO5:Apply the knowledge and understanding of local anti-infective and antiviral drugs
Practical 1:Organic mixture analysis	Detect the solubility and the extra elements in the given compound. Identify and confirm the given binary compound. Able to know the melting and boiling points of derivatives.
Practical 2: Estimations and isolations.	Able to extract lycopene from tomato. Isolate caffeine from coffee.