

DEPARTMENT OF CHEMISTRY

M.Sc., ORGANIC CHEMISTRY LESSON PLANS: 2022-23

Academic-Pedagogical-Evaluation: Course Overview

	P 1	Lecture
	P 2	Demonstration
	P 3	Question & Answer
	P 4	Debate
	P 5	Audio & video clips
Pedagogy:	Pq	Quiz
	Рт	Test
	P 10	Seminar
	PI	Invited Lecture

SEMESTER - I

PAPER -I: GENERAL CHEMISTRY – I

Course: M.Sc.	Year/Semeste	er:1-1 Fa	culty Name:B	.Leelakumari	
(OrganicChemistry) Subject:	PAPER-1: GENERAL CHEMISTRY-I				
Units:	 1.Rotational spectra of diatomic molecules 2.Raman effect-classical and quantum mechanical explanations 3.Spin Resonance Spectroscopy 4.Basic concepts of Symmetry and Group theory 5.Basic components of Computers, higher and lower level languages, Microsoft Fortran 				
LearningObjectives	of electronic spectroscopy.				
	 Learn spectroscopic methods based on magnetic resonanceprinciples. Learn basics of group theory and its application in 				
	• Learn basics of group theory and its application in chemistry.				
			basic concepts d itsapplicatio		Ν
Units	U1 U2 U3 U4 U5				
Total Hours: 60	12	12	12	12	12
Internal Evaluation	4	4	4	4	4

ResourceMat erial:	Study materials (handouts) http://www.nou.ac.in/econtent/Msc%20chemistry%20paper%202/MSc%20Chemistry
	%20Paper-II%20Unit-4.pdf
	** http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemi
	ry%20Paper-IX%20Unit-6.pdf
	Referencebooks:
	1. Symmetry and Spectroscopy of Molecules, K Veera Reddy, New Age International Publishers.
	2. Physical Chemistry by Peter Atkins and Julio de Paula, Oxford
	University Press.
	3. Chemical Applications of Group Theory, F. A. Cotton Wiley Eastern
	Limited New Delhi.
	4. Group Theory and its Applications to Chemistry, K. V. Raman, Tata
	McGraw – Hill Publishing Company Ltd., New Delhi.
	5. Computer programming in Fortran-IV by V.Rajaraman, Prentice
	Hall of India Pvt. Ltd., New Delhi.
	6. Molecular Spectroscopy, - Gordon M. barrow
	7. Fundamentals of Molecular Spectroscopy – Banwell.
	YouTubeLinks: https://www.youtube.com/watch?v=3-8nAn0Mo6w
	ModelQuestionpaper:
	http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Chemistry%20Paper-IX%20Unit-6.pdf

UNIT	DESCRIPTION	PEDAGOG Y	INTERNAL EVALUATION
I		P1,P3,P4, P5,P10	P10,PT
П	MECHANICAL EXPLANATIONS Raman effect-classical and quantum mechanical explanations-Rotational Raman and vibrational Raman spectra, Electronic spectra of diatomic molecules-Vibrational coarse structure-intensity of spectral lines-Franck Condon principle-applications, Rotational fine structure-band head and band shading, Charge transfer spectra.	P1,P3,P4,P 5,P10	PQ,PT
III	3.SPIN RESONANCE SPECTROSCOPY Spin Resonance Spectroscopy: Principle and theory of NMR spectroscopy-Nature of spinning particle and its interaction with magnetic field. Chemical shift and its origin. Spin-Spin interaction- experimental methods. Application of NMR to structural elucidation-Structure of ethanol, dimethylformamide, styrene and acetophenoneri. Principle and theory of ESR-g-factor, hyperfine interactions- applications of ESR studies to the structure of free radicals, metal complexes.	P1,P3,P4,P 5,P10	P10,PT
IV	4.CONCEPTS OF SYMMETRY AND GROUP THEORY Basic concepts of Symmetry and Group theory – Symmetry elements, symmetry operations and point groups – Schoenflies symbols – Classification of molecules into point groups – Axioms of Group theory – Group multiplication tables for C2V and C3V point groups –Similarity Transformation and classes – Representations – reducible and irreducible representations, Mulliken symbols, Orthogonality theorem and its implications, character table and its anatomy.	P1,P3,P4,P 5,P10	PT,PQ
V	5.BASIC COMPONENTS OF COMPUTERS, HIGHER AND LOWER LEVEL LANGUAGES, MICROSOFT FORTAN Basic components of Computers, higher and lower level languages, Microsoft Fortran: constants ariables and operators, arithmetic expressions, assignment and replacement statements, Input and Output statements – Format free and Format directed I/O statements – Iw, Fw.d, Ew.d and Gw.d format specifications, conditional and unconditional statements – Logical IF, Block IF and Go To statements, Do statement –	P1,P3,P4,P 5,P10	PQ,PT

 Application of Chemical Problems: Flowcharts and Programs for 1. Statistical Analysis calculation of arithmetic mean, mean deviation, variance and standard deviation of replicate measurements. 2. Solution of Quadratic equation – calculation of the roots of a quadratic equation. 3. Calculation of the pH and hydrogen ion concentration of an aqueous solution of a strong acid taking into account the auto ionization of water.
 Statistical Analysis calculation of arithmetic mean, mean deviation, variance and standard deviation of replicate measurements. Solution of Quadratic equation – calculation of the roots of a quadratic equation. Calculation of the pH and hydrogen ion concentration of an aqueous solution of a strong acid taking into account the auto
deviation, variance and standard deviation of replicate measurements. 2. Solution of Quadratic equation – calculation of the roots of a quadratic equation. 3. Calculation of the pH and hydrogen ion concentration of an aqueous solution of a strong acid taking into account the auto
quadratic equation. 3. Calculation of the pH and hydrogen ion concentration of an aqueous solution of a strong acid taking into account the auto
aqueous solution of a strong acid taking into account the auto
4. Calculation of the root of a polynomial using Gauss-Newton method – Application to Vander-Waal's equation.
5. Calculation of the rate constant of a first order reaction or calculation of molar extinction coefficient using Beer-Lambert's Law by Linear least-squares method.

PAPER -II: INORGANIC CHEMISTRY – I

Course:M.Sc. (Organic Chemistry)	Year/Semester:1-1 Faculty Name: CH. MALLIKA			A	
Subject:	PAPER-II: INORGANIC CHEMISTRY-I				
Units:	 Structure & Bonding a. Inorganic cage and ring compounds b. Polyacids Coordination compounds Electronic spectra of transition metal complexes a. Tanabe- Sugano diagrams for d1 –d9 octahedral and tetrahedral, transition metal complexes of 3d series. b. Magnetic properties of metal Complexes. 				
LearningObjectiv	 Acquire the knowledgeon applications of VSEPR, Valence Bond and Molecular orbital theoriesin explaining thestructures of simple molecules and role of p and d orbitals in pi bonding. Understandthe concept of MO theory to square 				
es	planar (PtCl4 2-) and Octahedral complexes(CoF6 3- , Co(NH3)6 3+), and Walsh diagram for H2O molecule				
	 Apply the knowledgeandunderstandingofUnderstand the Orgel and Tanabe-Sugano diagrams for d1 –d 9 octahedral and tetrahedral transition metacomplexes of 3d series tonewly prepared metal complexes 				
	 Develop interest in the areas of magnetic properties of transition and inner transition metalcomplexes – spin and orbital moments – quenching of orbital momentum by crystal fields incomplexes. 				
	 To understand the concept of Term symbols and Electronic spectra and Magnetic properties of complexes. 				
Units	U1	U2	U3	U4	U5
Total Hours: 60	12	14	13	11	10
Internal	Α	А	Α	Α	4
Evaluation	4	4	4	4	4

ResourceMat erial:	StudyMaterial(Handouts): 1. <u>https://uomustansiriyah.edu.iq/media/lectures/6/6_2018_12_19!11_20_35_P</u> <u>M.pdf</u>
	ReferenceBooks:
	1. Advanced Inorganic Chemistry by F.A. Cotton and G. Wilkinson, IV
	Edition, John Wiley and Sons, New York, 1980.
	2. Inorganic Chemistry by J.E. Huheey, III Edition, Harper International Edition, 1983.
	3. Theoretical Inorganic Chemistry, II Edition by M.C. Day and J. Selbin,
	Affiliated East-West press Pvt. Ltd., New Delhi.
	4. Inorganic Chemistry by Shriver and Atkins, Oxford University Press
	(1999).
	YouTubeLinks: https://www.youtube.com/watch?v=XBdJY3JGJgA
	PowerPointPresentations: 1. <u>https://kanchiuniv.ac.in/coursematerials/Electronic%20spectra.pdf</u>
	 <u>https://uomustansiriyah.edu.iq/media/lectures/6/6_2018_12_19!11_20_35_PM</u> <u>.pdf</u>
	ModelQuestionpaper:
	http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Ch
	emistry%20Paper-IX%20Unit-6.pdf

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATI ON
I	1.STRUCTURE & BONDING Structure & Bonding: Applications of VSEPR, Valence Bond and Molecular orbital theories in explaining the structures of simple molecules- role of p and d orbitals in $p\pi$ -d π bonding, Bent's rule, Non-valence cohesive forces. Application of MO theory to square planar (PtCl42-) and octahedral complexes (CoF63-, Co (NH3)63+). Walsh diagrams for linear (BeH2) and bent (H2O) molecules	P1,P3,P4,P 5,P10	P10,PT
Π	2a. INORGANIC CAGE AND RING COMPOUNDS Inorganic cage and ring compounds – preparation, structureand reactions of boranes, carboranes, metallocarboranes,Boron–Nitrogen (H3B3N3H3), Phosphorus–Nitrogen(N3P3Cl6) and Sulphur-Nitrogen (S4N4, (SN)x) cycliccompounds. Structure and bonding in higher boranes with(special reference to B12 icosahedra). Electron counting rulesin boranes – Wades rules (Polyhedral skeletal electron pairtheory). 2b. POLYACIDS Polyacids:Introduction to polyacids- Isopolyacdis,Isopoly molybdates, Isopolytungstates, Isopolyzadates, Structures of Polyacids [Mo ₇ O ₂₄] ⁶⁻ , [V10028]6- and [W4O ₁₆] ⁸⁻ , Heteropolyacids- properties of heteropolyacids and salts, structures of heteropolyacids and theories , Mialalicopause and Roscnneium theories , Pauling's theory and keggin's theory, applications of polyacids.	P1,P3,P4,P5, P10	PQ,PT
III	3. COORDINATION COMPOUNDS Coordination compounds: Crystal field theory - crystal field splitting patterns in octahedral, tetrahedral, tetragonal, square planar, square pyramidal and trigonal bipyramidal geometries. Calculation of crystal field stabilization energies. Factors affecting crystal field splitting energies – Spectrochemical series, Jahn – Teller theorem (static and dynamic Jahn-Teller theorem) and its consequences, nephelauxetic effect, applications and limitations of CFT; ligand field theory Experimental evidences for covalence in complexes. Molecular Orbital Theory of bonding for Octahedral, tetrahedral and square planar complexes. π -bonding and MOT-Effect of π - donor and π -acceptor ligands on Δ o. Experimental evidence for π - bonding in complexes.	P1,P3,P4,P5, P10	P10,PT

	4.ELECTRONIC SPECTRA OF TRANSITION METAL COMPLEXES Electronic spectra of transition metal complexes:	P1,P3,P4,P5, P10	PT,PQ
V	Term symbol-Free Ion terms and Energy Levels: Configurations, Terms, States and Microstates, calculation of Microstates for P ² and d2 Configuration, Russell- Saunders Coupling Schemes, J-J Coupling scheme, derivation of terms for various configurations P ² and d ² configuration, spectroscopic Ground state , Hole Formalism, Energy ordering of terms (Hund's Rules), Selection rules: Laporte orbital selection rule, spin selection rules. Splitting of energy levels and spectroscopic states Orgel diagrams of d1 to d9 metal complexes. Interpretation of electronic spectra of aquo Complexes of Ti(III), V(III), Cr(III), Mn(II), Fe(II), Fe(III), Co(II), Ni(II) and Cu(II). Calculation of interelectronic and		
	 spectral parameters for d8 metal complexes. 5a. TANABE-SUGANO DIAGRAMS FOR d1-d9 OCTAHEDRAL AND TETRAHEDRAL METAL COMPLEXES OF 3d SERIES Tanabe- Sugano diagrams for d1 –d9 octahedral and tetrahedral transition metal complexes of 3d series. Calculation of Dq, Racah Parameter (B) and nephelauxetic parameter (β), Charge transfer (L→M and M→L) spectra of metal complexes. 5b. MAGNETIC PROPERTIES OF METAL COMPLEXES 	P1,P3,P4,P5, P10	PQ,PT
V	Magnetic properties of metal Complexes: Types of magnetic behavior, Temperature independent paramagnetism. Magnetic properties of transition and inner transition metal complexes – spin and orbital		

PAPER -III: ORGANIC CHEMISTRY – I

Course: M.Sc.	Year/Semes	ter:1-1 F	aculty Name	: R.Anurad	ha
(Organic Chemistry)					
Subject:	PAPER-III: ORGANIC CHEMISTRY-I				
	1. Aliphatic Nucleophilic Substitutions				
	2. Aliphatic Electrophilic Substitutions				
	3. Stereoc	hemistry ar	nd conformatio	onal analysis	5
	4. Chemis	try of heter	ocyclic compo	unds	
Units:	5. Chemistry of Natural Products				
	• Acquire the knowledge of aliphatic nucleophilic substitution, neighboring group mechanism by O,N,S and non-classical carbocations.				
	• Understand aliphatic electrophilic substitution reactions.				
LearningObjectiv es	• To know about stereochemistry and conformational analysis.				
	• Develop : compou		e area of chemi	istry of heter	ocyclic
			e in the chemist , steroids and c		
Units	U1	U2	U3	U4	U5
Total Hours: 60	14 9 13 12 12				
Internal Evaluation	4	4	4	4	4

ResourceMat erial:	StudyMaterial(Handouts): 1. <u>https://www.siue.edu/~tpatric/NS.pdf</u>
	ReferenceBooks:
	1.Advanced Organic Chemistry: Reactions Mechani;sms and Structure by Jerry March, Mc.Graw Hill and Kogakush.
	2. Organic Chemistry Vol. I (Sixth Ed.) and Vol. II (Fifth Ed.) by I L Finar ELBS.
	3. Organic Chemistry (fifth Ed.,) by Morrison and Boyd, PHI, India.
	4. Organic Chemistry (fifth edition) by Francis A. Carey Tata Mc Graw Hill publishing Company Limited, New Delhi.
	5. Stereochemistry of Organic compounds by Ernest L. Eliel, Samuel H. Wilen
	6. Chemistry of natural products by S. V. Bhat, B. A. Nagasampangi and M. Siva kumar, Narosa Publishing House,6th reprint, 2010 YouTubeLinks:
	https://www.youtube.com/watch?v=yrvV85H737o
	PowerPointPresentations: http://www.spcmc.ac.in/wp-content/uploads/2021/02/PPT-7P-
	Nucleophilic-Substitution-Reactions-1.pdf
	ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Ch
	emistry%20Paper-IX%20Unit-6.pdf

UNIT-WISE PLAN

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	1.ALIPHATIC NUCLEOPHILIC SUBSTITUTIONS The SN2, SN1, SNi and SET mechanisms. Substitution reactions of ambident nucleophiles, anchimeric assistance, the neighbouring group mechanism: neighbouring group participation by O, N, S, halogens, aryl groups, alkyl and cycloalkyl groups in nucleophilic substitution reactions. Sigma, Pi bond participation in acylic and bicyclic systems (Non- classic carbocations). Nucleophilic Substitution at allylic, trigonal and Vinylic carbons. Effect of substrate, attacking nucleophile, leaving group and reaction medium.	P1,P3,P4,P5,P10	P10,PT
Ш	2.ALIPHATIC ELECTROPHILLIC SUBSTITUTIONS SE1, SE2, SEiMechanisms. Reactivity-effects of substrate, leaving group and solvent. Reactions- hydrogen exchange, migration of double bonds, halogenation of aldehydes, ketones, carboxylic acids, acyl halides, sulphoxides and sulphones.	P1,P3,P4,P5,P10	PQ,PT
ш	3.STEREOCHEMISTRY AND CONFORMATIONAL ANALYSISOptical isomerism: optical activity,molecular dissymmetry and chirality, elements of symmetry. Fischer's projection DL and RS configurations- relative and absolute configurations optical isomerism due to asymmetric carbon atoms- optical isomerism in Biphenyls, allenes and spiranes-optical isomerism of nitrogenous compounds, racemization and resolution. Geometrical isomerism: E,Z- configurations, properties of geometrical isomerism. Conformational analysis: conformations of acyclic molecules- alkanes and substituted alkanes, compounds having intramolecular hydrogen bonding. Conformations of cyclohexane, mono and disubstituted cyclohexane and decalins, effect of conformations on reactivity.	P1,P3,P4,P5,P10	P10,PT
IV	4 CHEMISTRY OF HETEROCYCLIC COMPOUNDS Structure, reactivity and synthesis of reduced three membered heterocycles: (a) Oxirane: Sharpless method, Shi epoxidation, Jacobson epoxidation, etc (b) Aziridine; Four membered heterocycles: (a) Oxetane, Azetine; five membered heterocycles: (a) Pyrrole: Paul Knorr, Hantzsch methods,(b) Thiophene: Paul Knorr, Hinsberg methods, (c) Furan: Paul Knorr, Fiest- Benary, Industrial methods, etc, (d) Pyrazole, Imidazole, Oxazole, Thiazole; Six Membered Heterocycles: (a) Pyridine, Pyridazine,	P1,P3,P4,P5,P10	PT,PQ

	Pyrimidine and Pyrazine; Aromatic Heterocycles : (a)		
	Indole; Fischer Indole synthesis, Bischler synthesis,		
	Madelung synthesis, Domino and cascade method of		
	Indole synthesis, (b) Quiniline and Isoquiniline, (c)		
	Coumarins and Chromones.		
V	5. CHEMISTRY OF NATURAL PRODUCTS	P1,P3,P4,P5,P10	P10,PT
	glycolipids & waxes conjugated lipids-lipoproteins		

PAPER -IV: PHYSICAL CHEMISTRY - I

Course: M.Sc. (Organic Chemistry)	Year/Semester:1-1 Faculty Name: B.Leela Kumari				
Subject:	PAPER-4:	PHYSICAL	CHEMISTRY- I		
1.Thermodynamics-I 2.Thermodynamics-II 3.Surface Tension 4.Chemical Kinetics-I 5.Chemical Kinetics-II					
LearningObjectives	 Explain the basic concepts of Thermodynamics and its applications Understand the concepts of thermodynamics of solutions. To understand the principle of micellisation. Understand the various kinetic theories, measurements of reaction rates. Learn experimental techniques for measuring the kinetics of fast reactions and 				of
Units	homogenous catalyzed reactionsU1U2U3U4				
Total Hours: 60	12	11	13	12	12
Internal Evaluation	4	4	4	4	4

ResourceMat erial:	StudyMaterial(Handouts): <u>https://www.toppr.com/ask/content/posts/surface</u> chemistry/notes-28204/
	Text Books:
100 .0	1. Physical Chemistry by Peter Atkins and Julio de Paula, Oxford University Press.
	2. Chemical Kinetics by K. J. Laidler, McGraw Hill Pub.
	3. Physical chemistry by K.L. Kapoor
	ReferenceBooks:
	1.Thermodynamics for Chemists, Samuel Glasstone
	2. Physical chemistry by Puri, Sharma and Pathania
	 Micelles, Theoretical and applied aspects, V. Moroi, Plenum publisher YouTubeLinks:<u>https://youtu.be/3ksUl-QGIDI</u>
	<u>https://youtu.be/EqWJ7KIP04I</u> PowerPointPresentations: <u>https://web.iitd.ac.in/~sdeep/Thermo_lecture_4.ppt</u>
	ModelQuestionpaper:
	http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Ch emistry%20Paper-IX%20Unit-6.pdf

UNIT	DESCRIPTION	PEDAGOGY	INTER NAL EVALU ATION
Ι	Basic concepts of second law of Thermodynamics-Entropy- Entropy changes accompanying different processes-Entropy changes in an ideal gas, entropy changes in the mixing of ideal gases, entropy as a function of V and T and entropy as a function of P and T- Entropy change in isolated systemsClausius inequality-Helmholtz and Gibbs energy – Maxwell relations - Criteria for spontaneity-variation of Gibbs energy with temperature and pressure for solids, liquids and gases-Concept of fugacity-determination of fugacity coefficient of gases- Thermodynamics of phase transitions- Concept of chemical potential-Location of phase boundaries- (Clausius- Clapeyron equation for Liquid- Vapour, Solid -Liquid and Solid- Vapour boundaries)- Ehrenfest classification of phases.	P1,P3,P4, P5,P10	P10,PT
II	Thermodynamics of mixtures -partial molar quantities - experimental methods of determination of partial molar quantities -Gibbs-Duhem equation and Duhem-Margules equation-Thermodynamics of mixing of liquids (Δ Hmix, Δ Gmix and Δ Smix) - Thermodynamics of ideal solutions - Raoult's law - Thermodynamics of colligative properties of dilute solutions - concept of activity and activity coefficient- Experimental determination of activity coefficient - Thermodynamic concept of equilibrium, variation of equilibrium with temperature (Van't Hoff equation) and pressure - Nernst heat theorem, Third law of thermodynamics.	P1,P3,P4,P 5,P10	P10,PT
III	Surface tension- Capillary action- Adsorption-Adsorption isothermsFreundlich adsorption isotherm, Langmuir adsorption isotherm-limitations - BET adsorption isotherm- estimation of Surface area.Surface active agents, classification of surface active agents, micellization, hydrophobic interaction, critical micellar concentration (CMC), factors affecting the CMC of surfactants, counter ion binding to micelles, thermodynamics of micellizationphase separation and mass action models.	P1,P3,P4,P 5,P10	P10,PT

IV	Chemical Kinetics: Theories of reaction rates- Collision theoryLimitations, Transition state theory.Lindeman's theory of unimolecularreactions-Limitations. Diffusion controlled reactions. Effect of ionic strength on rates of reactions- Primary and secondary salt effects. Effect of dielectric constant on reactions - kinetic isotope effect - Primary and secondary isotopic effects -Effect of substituent -Linear free energy relationships-Hamett equation - limitations- Taft equation. Kinetics of consecutive reactions, parallel reactions, opposing reactions (Uni molecular steps only, no derivation).	P1,P3,P4,P 5,P10	PT,PQ
V	Specific and general acid-base catalysis. Skrabal diagrams. Steady state approximation- Enzyme catalysis- Michaelis - Menten mechanism. Derivation of Kinetic equation and Kinetic parameters. Lock and Key hypothesis-pH dependence of enzyme catalyzed reactions.Fast reactions- different methods of studying fast reactions- flow methods, relaxation methods- temperature jump and pressure jump methods.	P1,P3,P4,P 5,P10	P10, PT

SEMESTER - II

PAPER -I: GENERAL CHEMISTRY – II

Course: M.Sc.	Year/Semester:	1-2 Fac	culty Name: B.L	eela Kumari		
(Organic Chemistry) PAPER-1: GENERAL CHEMISTRY-II						
Subject.						
	 Wave equation Wave mechanics of simple systems 					
		 Wave mechanics of simple systems Hydrogen atom 				
		on principle				
Units:		e bond appro	ach			
	• Students will have the idea of wave function and understand the uncertainty relations					
LearningObjectives	• Students will learn how to solve the Schrodinger Eq. rigorously for model systems					
LearningObjectives	• Students will be able to understand and be able to explain the origin of quantized energy levels					
	 Students will learn to apply concepts from physics and methods from mathematics to derive and understand the properties of chemical systems that arise from quantum mechanical models for the structure of atoms and molecules 					
	5	ices betweer	nderstand an I classical and	1	e	
Units	U1	U2	U3	U4	U5	
Total Hours: 60	11	13	12	12	12	
Internal Evaluation	4	4	4	4	4	

ResourceMat erial:	StudyMaterial(Handouts): https://quantum.phys.cmu.edu/CQT/chaps/cqt02.pdf
	ReferenceBooks:
	YouTubeLinks: <u>https://youtu.be/gNDnHWg-cDs</u> <u>https://youtu.be/jb8XvtEgAyk</u> PowerPointPresentations: <u>https://people.uleth.ca/~roussel/C2000/slides/08VBthe</u> <u>y.pdf</u> ModelQuestionpaper: <u>http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20C</u> <u>emistry%20Paper-IX%20Unit-6.pdf</u>

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATI ON
Ι	Wave equation – interpretation of wave function – properties of wave function – normalization and orthogonalization , operators – linear and non-linear commutators of operators, Postulates of quantum mechanics, setting up of operators observables – Hermitian operator – Eigen values of Hermitian operator.	P1,P3,P4, P5,P10	P10,PT
II	Wave mechanics of simple systems with constant potential energy, particle in one dimensional box – factors influencing colour– transition – dipole integral, symmetry arguments in deriving the selection rules-the concept of tunneling – particle in a three dimensional box, Rigid rotor, wave mechanics of systems with variable potential energy- simple harmonic oscillatorsolution of wave equation- selection rules.	P1,P3,P4,P 5,P10	PQ,PT
III	Hydrogen atom-solution of R(r), θ (θ) and Φ (ϕ) equations- probability density in orbitals-shapes of orbitals. Perturbation theory- time independent perturbation (only first order perturbation is to be dealt with) – application to ground state energy of hydrogen and helium atom	P1,P3,P4,P 5,P10	Р10,Р Т
	Variation principle-applications to hydrogen and helium atoms-calculation of zero point energy of harmonic oscillator-many electron atom- Comparison between Perturbation and variation theorems. Hartee-Fock self- consistent field method and introductory concepts of Density functional theory(DFT)	P1,P3,P4,P 5,P10	PT,P(
V	Valence bond approach-directed valence-hybridization- covalent bondcalculation of ionic and covalent bond contributions in hydrogen molecule. Molecular orbital theory – LCAO approximation – hydrogen molecule ion – hydrogen molecule (fundamental concepts only) – The electronic transitions in the hydrogen molecule	P1,P3,P4,P 5,P10	PQ,P1

PAPER -II: INORGANIC CHEMISTRY – II

Course: M.Sc. (Organic Chemistry)	Year/Semester:1-2 Faculty Name: CH. MALLIKA					
Subject:	PAPER-II	: INORGANI	C CHEMISTRY	ζ -ΙΙ		
		cluster com	-			
	Ŭ	$\frac{1}{1}$				
		•	libria in solu		1	
Units:	9. Determination of stability constants of complexes10.Reaction Mechanisms of Metal Complexes					
	• Students will understand the definition of clusters and poly atomic clusters					
LearningObjectives	• Students are able to apply 18 and 16 electron rules to complexes to explain their stabilities.					
	• Students are able to understand the stability of comp based on HSAB principle.			mplexes		
	• Students will able to apply different methods to find stability constants in reaction.					
		understand d echanism.	ifferent reaction	ons of compl	exes and	
Units	U1	U2	U3	U4	U5	
Total Hours: 60	12 12 12 12 12					
Internal Evaluation	4	4	4	4	4	

ResourceMat erial:	StudyMaterial(Handouts): 1. <u>https://www.sscasc.in/wp-</u> <u>content/uploads/downloads/Chemistry/Inorganic-Chemistry.pdf</u>					
	ReferenceBooks:					
	1. Advanced Inorganic Chemistry by F.A. Cotton and R.G. Wilkinson, IV Edition, John, John Wiley and Sons, New York, 1980.					
	2. Inorganic Chemistry by J.E. Huheey, III edition, Harper International Edition, 1983.					
	3. Organometallic Chemistry-A unified approach by A. Singh and R.C. Mehrotra, Wiley Eastern Ltd.					
	4. Inorganic Chemistry by Shriver and Atkins, Oxford University Press (1999)					
	5. Theoretical Inorganic Chemistry, II Edition by M.C. Day and J. Selbin, Affiliate East-West press Pvt. Ltd., New Delhi.					
	6. Mechanisims of Inorganic reactions in solution by D.Benson, MCgraw Hill, London, 1968.					
	7. Inorganic chemistry by K.F. Purcell and J.C.Kotz, W.B. Saunders company, New York, 1977					
	YouTubeLinks: https://www.youtube.com/watch?v=7gmAfRCDTk0					
	ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20C emistry%20Paper-IX%20Unit-6.pdf					

UNIT	DESCRIPTION	PEDAGOGY	INTERN AL EVALUA TION
I	Metal cluster compounds - definition – evidences for existence of M-M bonds - conditions favorable for formation of M-M bonds – preparation, structure and bonding of the following metal cluster compounds. Re2Cl8 2- , Mo2Cl8 4- , Re2(RCOO)4X2, Mo2(RCOO)4(H2O)2, Cr2(RCOO)4(H2O)2, Cu2(RCOO)4 (H2O)2, Cr2Cl9 3- , Mo2Cl9 3- , W2Cl9 3- , Re3Cl9, Re3Cl123- , Mo6Cl8 4+, Nb6X122+ and Ta6X122+. Polyatomic clusters – Zintle ions, Chevrel phases.	P1,P3,P4,P 5,P10	P10,PT
п	Organometallic compounds - 16 and 18 electron rules. Isoelectronicrelationship - Synthesis, structure, bonding and reactions of carbon monoxide, dinitrogen and nitric oxide complexes. Isolobal relationship – H, Cl, CH3, Mn(CO)5; S, CH2, Fe(CO)4; P, CH, Co(CO)3 Synthesis, structure, bonding and reactions of metallocenes with special reference to ferrocene	P1,P3,P4,P5 ,P10	PQ,PT
ш	Metal Ligand equilibria in solution : Step wise and overall formation constants and their interaction. Trends in stepwise constants ((statistical effect and statistical ratio), factors affecting the stability of metal complexes; Stability correlations - Irwing -William's series, Pearson's theory of hard and soft acids and bases (HSAB), Application of HSAB: Biological functions and toxicology of metals, and medicinal applications; chelate effect and its thermodynamic origin	P1,P3,P4,P5 ,P10	P10,P Q
IV	Determination of stability constants of complexes by spectrophotometric method ((Job's method) and pH –metric method(Bjerrum's). Reactivity of metal complexes – inert and labile complexes. Explanation of lability on the basis of valence bond and crystal field theories.	P1,P3,P4,P5 ,P10	PT,PQ
v	Reaction Mechanisms of Metal Complexes: Reactivity of metal complexes, inert and labile complexes, Kinetics and mechanisms of substitution reactions, kinetics of substitutions reactions in octahedral complexes, acid hydrolysis, Factors affecting acid hydrolysis, Base hydrolysis, Conjugate base mechanism, Anation reactions, substitution reactions in square planar complexes, Trans effect, Mechanism of trans effect, Electron transfer reactions-– concept of complementary and non-complementary reactions with examples, inner sphere and outer sphere mechanisms, Marcus theory.	P1,P3,P4,P5 ,P10	PQ,PT

PAPER -III: ORGANIC CHEMISTRY - II

Course: M.Sc. (Organic Chemistry)	Year/Semester:1-2 Faculty Name: R.ANURADHA				
Subject:	PAPER-II	I: ORGANIC	CHEMISTRY-I	I	
Units:	 1.Aromaticity& Aromatic Nucleophilic Substitutions 2.Reactive Intermediates & Named Reactions 3.Molecular Rearrangements 4.Spectroscopy 5.Alkaloids & Peptides and Proteins & Nucleic acids 				
LearningObjectives	 Acquire the knowledge of aromaticity, aromatic nucleophilic substitution Understand reactive intermediate and name reactions, Apply the knowledge and understanding of molecular rearrangementsn of electron deficient carbon, Nitrogen and Oxygen Develop interest in the areas of spectroscopy-Principles o9f UV, IR,NMR and Mass spectroscopy. To gain knowledge about alkaloids, peptides, proteins and nucleic acids 				
Units	U1	U2	U3	U4	U5
Total Hours: 60	12 9 12 15 12				12
Internal Evaluation	4	4	4	4	4

ResourceMat		StudyMaterial(Handouts): https://courses.lumenlearning.com/suny-potsdam-organicchemistry/chapter/5-6-reactive-intermediates/
erial	1:	Text books
		1. Organic Chemistry Vol. I (Sixth Edn.) and Vol. II (Fifth Ed.,) by IL finar ELBS.
	M.	2. Organic Chemistry (fifth Edn.,) by Morrison and Boyd, PHI, India.
		3. Organic Chemistry (fifth edition) by Francis A. Carey Tata McGraw Hill
		publishing Company Limited, New Delhi.
		4. Reaction Mechanism in Organic Chemistry by Mukherjee Sirigh, N Terniitarr,
		Indiar
		5. A guide book to mechanism in Organic Chemistry by Peter Sykes, ELBS.
		ReferenceBooks:
		1. Advanced organic chemistry by Jerry March (4th Edition)Wiley Eastern.
		2. Stereochemistry of carbon compounds by E.Eliel, John Wiley & Sons, Inc.
		3. Stereochemistry of Organic compounds by D. Nasipuri.
		4. Chemistry of Natural products by R.S. KalsiKalyani Publishers. 1983
		YouTubeLinks: <u>https://youtu.be/ZC8kp_6Sd48</u>
		https://youtu.be/HhV3H-m5f2c
		PowerPointPresentation: <u>https://youtu.be/kaXeqpCYgX4</u>
		ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%20Ch
		emistry%20Paper-IX%20Unit-6.pdf

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 A) Aromaticity: Concept of Aromaticity, Aromaticity of five membered, six membered and fused systems -non-benzenoid aromatic compounds:- cyclopropenylcation, cyclobutadienyldication, cyclopentadienyl anion – tropyliumcation and cyclooctatetraenyl di anion – matallocenes, ferrocenes, azulenes, fulvenes, annulenes, fullerenes. Homo aromaticity, Anti aromaticity and Pseudo aromaticity. B) Aromatic Nucleophilic Substitutions: The SNAr, SN1, benzyne and SRN1 mechanisms. Reactivity: Effect of substrate, leaving group and attacking nucleophile. The Von- Richter ,Sommlet- Hauser and Smiles rearrangements. 	P1,P3,P4,P5, P10	P10,PT
п	A)Reactive Intermediates : Generation, structure, stability and reactivity of Reactive intermediates: carbanion, carbocation, free radicals, carbenes and nitrenes. B)Named Reactions : - Wittig reaction, Grignard reaction, Stork enamine reaction, Michael addition, Mannich Reaction, Diel's-Alder reaction and Ene-reaction,	P1,P3,P4,P5,P 10	PQ,PT
ш	Molecular Rearrangements: Types of molecular rearrangements, migratory aptitude; Rearrangements to electron deficient carbon: Pinacol-pinacolone, Wagner- MeerweinandBenzil-Benzilic acid, Rearrangements to electron deficient nitrogen: Beckmann, Hofmann, Curtius, Schmidt and Lossen rearrangements; Rearrangements to electron deficient oxygen: Baeyer- villiger, Dakin rearrangements; Other rearrangements: Neber rearrangement and Favorskii rearrangements	P1,P3,P4,P5,P 10	P10
IV	A) UV Spectroscopy : Various electronic transitions, selection rules, effect of solvent on electronic transitions, the absorption laws, chromophores, auxochromes, bathochromic and hypso chromic shifts, hyperchromic and hypochromic effects, Woodward-Fieser rules for conjugated dienes and carbonyl compounds. B) Infrared Spectroscopy: Basic principles: types of molecular vibrations, fingerprint region and identification of functional groups. C) Nuclear Magnetic Resonance Spectroscopy (1H-NMR): nuclear spin, nuclear resonance, saturation, shielding of magnetic nuclei, chemical shifts, factors affecting the chemical shift, and assignment of chemical shifts.	P1,P3,P4,P5,P 10	PT,PQ

	D) Mass Spectroscopy: Basic principles, nitrogen rule		
	and fragmentation pattern of carbonyl compounds and		
	alcohols		
	A) Alkaloids: Occurrence, Isolation, classification based on		
	nitrogen heterocyclic ring and synthesis of quinine and	P1,P3,P4,P5,P	PQ,PT
	nicotine B) Peptides and Proteins: α -Aminoacids, their	10	
	general properties and synthesis, Synthesis of peptides		
• •	byMerrifield solid phase synthesis.Primary, secondary and		
V	tertiary structures of proteins C) Nucleic acids:		
	Heterocyclic bases; Purines: Adenine and Guanine;		
	Pyramidines: Cytosine, Uracil and Thymine; nucleosides,		
	nucleotides Basic concepts of the structures of RNA and		
	DNA		

PAPER -IV: PHYSICAL CHEMISTRY – II

Course: M.Sc. (Organic Chemistry)	Year/Semester:	1-2 Fa	culty Name: B.I	.eela Kumari	
Subject:	PAPER-IV	: PHYSICAL	CHEMISTRY-	II	
Units:	1.Crystal structure of solids2.Classification of polymers3.Electrochemistry I4.Electrochemistry II5.Photochemistry				
LearningObjectives	 Explain the basic concepts of Crystallography Understand the types of polymers and analyze various physical properties of polymers Understand the concepts of electrochemistry and theories like Debye Huckel theory Understand the basic concept and theories of electrode-electrolyte interface Learn principles of photochemistry and various 				alyze stry and es of
Units	U1	tochemical 1 U2	U3	U4	U5
Total Hours: 60	12	12	12	12	12
Internal Evaluation	4	4	4	4	4

ResourceMat erial:	StudyMaterial(Handouts): <u>https://www.arsdcollege.ac.in/wp-</u> <u>content/uploads/2020/04/Glass-transition-Temperature-and-factors-affecting-</u>					
	<u>1.pdf</u>					
	ReferenceBooks:					
	1. Physical Chemistry by Peter Atkins and Julio de Paula, Oxford University I					
	2. Physical Chemistry by G.W. Castellon, Narosha Publishing House					
	3. Physical chemistry by K.L. Kapoor.					
	4. Principles of photochemistry, RohitgeeMukhargee					
	YouTubeLinks: <u>https://youtu.be/5h5gXoFyo64</u>					
	PowerPointPresentations: <u>https://www.chemistry.mcmaster.ca/~aph/chem1a3/le</u> ures/lec12/lec12.ppt					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					
	ures/lec12/lec12.ppt ModelQuestionpaper:					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					
	ures/lec12/lec12.ppt ModelQuestionpaper: http://www.nou.ac.in/econtent/Msc%20Chemistry%20Paper%20IX/MSc%200					

UNIT	DESCRIPTION	PEDAGOGY	INTER NAL EVALU ATION
Ι	Crystal structure of solids : Fundamental of lattices, unit cell, Bravais lattices, symmetry elements in crystals, packing efficiency, radius ratios; Miller indices. Structures and types of solids. Structure determination by X-ray diffraction (Bragg's equation). Magnetic properties of solids- Classification of magnetic materials, Magnetic susceptibility, Measurement of magnetic susceptibility. Electric properties- Band theory, the band structure of metals, insulators, and semiconductors. The temperature dependence of the conductivity of extrinsic semiconductors. Superconductivity and occurrence. Meisner effect. Types of superconductors. Theories of superconductivity - BCS theory.	P1,P3,P4,P5, P10	P10,PT
II	Classification of polymers - Free radical, ionic and Zeigler - Natta Polymerization - kinetics of free radical polymerization - Techniques of polymerization - Glass transition temperature - Factors influencing the glass transition temperature - Number average and Weight average, Molecular weights - molecular weights determination - End group analysis - Osmometry - Light scattering and ultra-centrifugation methods.	P1,P3,P4,P5,P 10	PQ,PT
III	Electrochemistry I: Ionic mobilities and conductivities - Debye-Huckel theory of strong electrolytes, Debye- Huckelonsagar equation-limitations- mean activity coefficient-Verification of Debye-Huckel limiting law. Electro chemical cell- Galvanic and electrolytic cell. Nernst equation-Concentration cell with and without transference- effect of complexation on redox potential- ferricyanide/ ferrocyanide couple, Iron (III) phenonthroline/ Iron(II) phenonthroline couple. Fuel Cells- constructionVarious types-Examples.	P1,P3,P4,P5,P 10	P10,PT
IV	Electrochemistry II : The electrode-electrolyte interface. The electrical double layer. The Helmholtz-Perrin parallel-plate model, the Gouy-Chapman diffuse-charge model and the Stern model. Electrodics: Charge transfer reactions at the electrode-electrolyte interface.Derivation of Butler-Volmer equation. High field approximation, Tafel equation, Low field equilibrium, over voltage. Theories of over voltage- Corrosion - Concentration polarization - Polarography -Half wave potential and Ilkovic equation.	P1,P3,P4,P5,P 10	PT,PQ

Franck-Condon brinciple. Electronically excited molecules-	P1,P3,P4,P5,P 10	PQ,PT
--	---------------------	-------

SEMESTER - III

PAPER -I: ORGANIC REACTION MECHANISMS, PERICYCLIC REACTIONS AND PHOTOCHEMISTRY

PHOTOCHEMISTRY					
Course:M.Sc.(ORGANIC CHEMISTRY)	Year/Semester	r:2-1 Facu	lty Name: R.AN	NURADHA	
Subject:	ORGANICREACTIONMECHANISMS,PERICYCLICREACT IONSANDPHOTOCHEMISTRY				
Units:	 Radical substitution reaction Elimination reactions Additionreactions Addition to carbon-carbon multiple bonds Additiontocarbon-heteroatommultiplebonds Pericyclic reactions OrganicPhotochemistry 				
LearningObjectives	 Acquire the knowledge of reactions and mechanisms of radical Substitution. Understand reactions and mechanisms of Elimination reactions and their stereo chemistry. Apply the knowledge and understanding of Addition reactions to carbon- carbon, carbon- hetero atom multiple bonds. Acquire the knowledge of reactions and mechanism Pericyclic reactions and their classification. 				
	 Understand the concept of photochemistry of carbonyl compounds, unsaturated systems and aromatic compounds 				
Units	U1	U2	U3	U4	U5
Total Hours: 60	11	11	13	12	13
Internal Evaluation	4	4	4	4	4

ResourceMat erial:	StudyMaterial(Handouts): <u>https://edscl.in/pluginfile.php/2823/mod_resource/content/1/Teachers%20</u> <u>otes.pdf</u> ReferenceBooks:
	1) <u>AdvancedOrganicChemistry:ReactionsMechanismsandSt</u> <u>ructurebyJerryMarch,Mc.GrawHillandKogakush.</u>
	2) <u>MolecularreactionsandPhotochemistrybyCharlesDupey</u> andO.Chapman,Prentic Hall.
	3) PericyclicreactionsbyS.N.Mukharji,Mcmilan.
	4) <u>MechanismsandTheoryinOrganicChemistrybyT.H.Lowerya</u> <u>d</u>
	K.S.Richgardson. 5) <u>5)ThemodernstructuraltheoryinOrganicChemistryby</u> <u>L.N.Ferguson,PreticeHall</u>
	<mark>YouTubeLinks:</mark> https://www.youtube.com/watch?v=Mjck01ao9Mw&list=PLj_Alq7xw30kL1S84P <u>M02wSfkTeN6n_</u>
	PowerPointPresentations: https://www.powershow.com/view0/7140c0- ZjY3Z/photochemistry_ppt_powerpoint_ppt_presentation
	ModelQuestionpaper: https://www.andhrauniversity.edu.in/student-corner/ug-and-pg- syllabus.html

UNIT	DESCRIPTION	DEDACOCV	INTERNAL EVALUATION
	Radical substitution reactions Reactivityforaliphaticsubstrates,reactivityatBridgehead,React	P1,P3, P5, P10	P10,PT
I	ivityinaromaticsubstrates,neighbouringgroupassistanceinfreer adicalreactions,reactivityintheattackingradical,effectofsolvent onreactivity,halogenationatanalkylcarbon and allylic carbon, hydroxylation at aromatic carbon by means ofFenton's reagent, formation of cyclic ethers with Pb (OAC)4, Hunsdieckerreaction,Kolbereaction,ReedreactionandSandma yerreaction.		
Π	Elimination reactions : Mechanisms of E2, El, and E1CB, factors-effects ofsubstrate,attackingbase,leavinggroupandmedium.Stereoche mistryofeliminationsinacyclicandcyclicsystems.Saytzeffelimi nation,Hoffmaneliminationandpyrolyticelimination.	P1,P3, P5, P10	P10,PT
ш	Addition to carbon-carbon multiple bonds- Addition to carbon-carbon multiple bonds- Addition reactions involvingelectrophiles,nucleophilesandfreeradicals,cyclicmech anisms.Stereochemistryandreactivity.Hydrogenationofdoublean dtriplebonds,Birchreduction,Hydroboration,Michaelreaction,Pri nsreaction.AdditionofoxygenandN2O4.	P1,P3, P5, P10	P10,PT
	Additiontocarbon- heteroatommultiplebonds:Mechanismandreactivity. Reductionsofcarbonylcompounds,carboxylicacids,esters,ni triles.AddtionofGrignardreagents,Mannichreaction,Reform atskyreaction,Tollen'sreaction,Wittigreaction		
IV	Pericyclic reactions: MolecularOrbitalSymmetry,MOdiagramsof ethylene, 1,3 Butadiene,1,3,5-Hexatrieneandallylsystem.Woodward- Hoffmancorrelationdiagrammethod,Frontiermolecularorbital approach(FMO)andPerturbationmolecularorbitalapproach(P MO)fortheexplanationofpericyclicreactionsunderthermaland photochemicalconditions. Classificationofpericyclicreactions: ElectrocyclicReactions :C onrotatoryandDisrotatorymotions. $4n\pi$ and $4n+2\pi$ electronssyst ems. Cycloadditions :AntarafacialandSuprafacialadditions. $2+2,4+$ 2cycloadditionsandchelotropicreactions. Sigmatropicrearrangements -Suprafacial andAntarafacial shifts ofH, Sigmatropic shift involvingcarbon moieties (1,3),(1,5),(3,3) and (5,5) sigmatropicrearrangements.Claisen,Cope,Oxy-copeandaza- Coperearrangements.Enereaction.	P1,P3, P5, P10	P10,PT

$\mathbf{V} \qquad \begin{array}{l} \textbf{Photochemistryofcarbonylcompounds} n-\pi^* and \pi-\pi^* \\ transitions. NorrishtypeIandNorrish \\ type II cleavages. Patterno-Buchi reactions, Photoreduction, \\ Photochemistryof & \alpha,\beta- & unsaturated \\ ketones,photochemistryofenonesandcyclohexadienones.Phot \\ ochemistryofunsaturatedsystems(Olefins):cis- \\ transisomerization,dimerization,andaddition.Acetylenes- \\ dimerisation.Photochemistryof1,3 & butadienes, & di-\pi- \\ ethanerearrangement.Photochemistry & of & aromatic \\ compounds & - & 1,2,1,3, & and & 1,4-additions.Photo- \\ Friesrearrangement,Photo-Friesreactionsofanilides. \end{array}$	P1,P3, P5, P10	P10,PT
---	-------------------	--------

PAPER -II: Organic Spectroscopy

Course:M.Sc(organic chemistry)	Year/Semester	r:2-1 Fac	ulty Name: R.	ANURADH	A		
Subject:	OrganicSpectroscopy						
Units:	 1.UV Spectroscopy 2.IR Spectroscopy 3.NMR Spectroscopy 4.MASS Spectroscopy 5.Structural Elucidation of Organic Compounds 						
LearningObjectives	 Acquire the knowledge of UV spectra of aromatic and hetero cyclic compounds and conformations of substituted cyclohexanones. Understand the characteristic vibrational frequencies of various functional groups by Infrared spectroscopy. Apply the knowledge and understanding the principle of NMR and itsapplications. Develop interest in the areas of Mass Spectroscopic techniques and fragmentations of various functional groups. To acquire the knowledge on structural elucidation of organic compounds using UV, IR, NMR, Mass spectral 						
Units	data. U1	U2	U3	U4	U5		
Total Hours: 60	10	13	13	15	9		
Internal Evaluation	4	4	4	4	4		

ResourceMat erial:	StudyMaterial(Handouts): <u>https://www.utdallas.edu/~scortes/ochem/OChem</u> Lab1/recit_notes/ir_presentation.pdf
	 ReferenceBooks: SpectroscopicidentificationoforganiccompoundsbyRMSilverstein,GCBasslerandTBMorrill OrganicSpectroscopybyWilliamKemp SpectroscopicmethodsinOrganicchemistrybyDHWilliam sandIFleming ModernNMRtechniquesforchemistryresearchbyAndrewBDerom NMRinchemistry- AmultinuclearintroductionbyWilliam Kemp Spectroscopic identificationof organic compoundsby P S Kalsi IntroductiontoorganicspectroscopybyPavia Carbon-13NMRfororganicchemistsbyGCLevyandOLNelson NuclearMagneticResonanceBasicprinciplesbyAtta-ur-Rahman
	YouTubeLinks: https://youtu.be/jjcHZuTGWXk https://youtu.be/XFvGQbaZPr4 https://youtu.be/2vDAyBCa5NE PowerPointPresentations: https://www.sjctni.edu/Department/ch/eLecture/Mass%20Spectrometry.ppt ModelQuestionpaper: https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-syllabus.html

Unit-Wise Plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
[UV-SPECTROSCOPY UV spectra of aromatic and heterocyclic compounds, α - diketones, β -diketones, enediones andquinines. Applications of UV Specroscopy-study of isomerism, determination of strength of hydrogen bonding and conformations of α - substituted cyclohexanones. Steric effect inbiphenyls.	P1,P3, P5,P10	PQ, PT
II	IR_SPECTROSCOPY Characteristic vibrational frequencies of alkanes, alkenes, alkynes, aromatic compounds, alcohols, ethers, phenols, amines, carbonyl compounds, esters, amides, carboxylic acids, anhydrides, lactones, lactums, nitriles and conjugated carbonyl compounds. Effect of hydrogen bonding and solvent on vibrational frequencies.	P1,P3, P5,P10	P10,PT
III	NMR SPECTROSCOPY Nuclear spin, resonance, satuaration, shielding of magnetic nuclei, chemical shifts and its measurements, factors affecting chemical shift, chemical and magnetic equivalence of spins, spin-spin coupling, intergration, the coupling constant, types of spin-spin couplings, factors influencing coupling constants, first-orderand non-first order spectra, spin system notations (ABX, AMX, ABC, A ₂ B ₂ etc.).Simplification of non-first order spectra-use of higher magnetic fields, nuclear magnetic double resonance and contact shiftreagents. Deuterium exchange, nuclear overhauser effect difference spectra, Study of dynamic processes by Variable temperature(VT)NMR, restricted rotation DMF, cyclohexane ring inversion.	P1,P3, P5,P10	P10,PT
IV	MASS SPECTROSCOPY Basic Principles, instrumentation, isotope abundance, the molecular ion, metastable ions,basepeak ,fragmentions, even-electron rule and nitrogen rule. McLafferty rearrangement orthoeffect. <i>retro</i> -Diels-Alderreaction, Fragmentation processes-fragmentation associated with various functional groups (alkanes, cycloalkanes, alkenes, alkynes, aromatic hydrocarbons, alcohols, phenols, ethers, aldehydes , ketones, esters, carboxylic acids, amides, amines, alkyl chlorides and alkyl bromides.	P1,P3, P5,P10	P10 PT
V	Structural elucidation of Organic compounds by a combined application of the UV,IR,NMR and MASS spectral data	P1,P3, P5,P10	P10,PT

PAPER -III:ORGANIC SYNTHESIS

Course: M.Sc. (Organic chemistry)	Year-Semester	:2-1 F	aculty Name:	CH.MALL	IKA	
Subject:	Paper III- ORGANIC SYNTHESIS					
Units:	 Formation of carbon-carbon(c-c) single bonds Formation of carbon-carbon double bonds Organic polymers Reactions of unactivated carbon-hydrogen bonds Asymmetric synthesis 					
Learning Objectives	 Acquire the knowledge of formation of C-C via enolates, enamines, organo metallic reagents. Understand formation of C=C bonds , pyrolytic syn eliminations. Apply the knowledge and understanding the introduction of organic polymers, properties and their classification. To understand the concept of reactions of unactivated C-H bonds and their synthetic applications. Develop interest in the areas of Asymmetric 					
Units	U1	U2	der reaction U3	U4	U5	
Total Hours: 60	12	13	12	10	13	
Internal Evaluation	4	4	4	4	4	

Resourceiviat erial:	StudyMaterial(Handouts):
	https://new.bhu.ac.in/Content/Syllabus/Syllabus_3006312820200414035642.pdf
~.	https://profiles.uonbi.ac.ke/andakala/files/sch_302_asymmetric_synthesis.pdf
	ReferenceBooks:
	1. Some Modern Methods of Organic Synthesis W.Carothers, ThirdEdition, Cambridge University Press,Cambridge,1988.
	 ModernSyntheticReactions,HerbertO.House,SecondEdition, W.A.BenzamineInc.MenioPark,California,1972.
	3. PrincipleofOrganicSynthesis- R.O.C.NormanandJ.M.Coxon.(ELBS)
	4. AdvancedorganicchemistrypartA&BFourthedition;FrancisACarya ndRichardJ.Sundberg;KluwerAcademic/PlenumPublisherNewYor k,2000.
	5. OrganicchemistryJonathanClayden,NickGeeves,StuartWarren, 2ndEdition,2012,OxfordUniversityPress.
	6. Stereochemistry of organic compounds — Principles & Applications by DNasipuri.
	7. StereochemistryofCarboncompoundsbyErnestLEliel&SamuelH.wile n.
	8. Stereochemistry:Conformation&MechanismbyPSKalsi.
	9. Thethirddimensioninorganicchemistry, by Alan Bassendale.
	10. StereoselectivityinorganicsynthesisbyRSWard.
	 AsymmetricsynthesisbyNogradi. AsymmetricorganicreactionsbyJDMorrisonandHSMoschcr.
	$\label{eq:principles} Principles in Asymmetric synthesis by Robert E. Gawley \& JEFFREYAUBE.$
	YouTubeLinks: https://www.youtube.com/watch?v=fLXyKLVd6Hc
	ModelQuestionpaper: https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-syllabus.html

Unit– Wise plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	 FormationofCarbon-Carbon(C-C)singlebonds: Formation of Carbon-Carbon (C-C) single bonds: A) Alkylations via enolate anions-1,3-diarbonyl and related compounds, direct alkylation of simple enolates, imine and hydrozone anions, enamines. The aldol reaction, umplong (dipole inversion). B) Via Organometallic reagents- organ palladium, organo nickel and organo copper reagents 	P1,P3,P5,P10	PQ, PT
II	Formationofcarbon-carbondoublebonds : β- Elimination reactions, Pyrolytic syn eliminations, alkenes form hydrazones, 1,2-diols, sulfones, sulphoxide-sulphonate rearrangement, the Wittig and related reactions		PT,P!0
III	Organic polymers Organic polymers Introduction to organic polymers, general properties and classification of polymers. Methods of polymerization: (a) Addition polymerization-Definition, synthesis and applications, vulcanization. (b) Condensation polymerization- Definition, synthesis and applications. Radical polymerization. (With atleast two examples in each category)	P1,P3,P5,P10	PT,P10
IV	Reactions of un activated carbon-hydrogen bonds: Reactions of unactivated carbon-hydrogen bonds Unactivated carbon-hydrogen bonds: Definition, mechanism and synthetic applications- The Hoffmann-Loeffler-Freytag reaction(HLF reaction)-cyclisation reactions of Nitrenes-the Barton reaction-Photolysis of organic hypohalites-hypochlorites, hypobromites and hypoiodites,		PT
V	Asymmetric Synthesis: Topocity – Prochirality – Substrate selectivity – Diastereoselectivity and enantioselectivity –Substrate controlled methods – use of chiral substrates – examples Auxiliary controlled methods – Use of chiral auxiliaries – Chiral enolates – alkylation of chiralimines-Reagent controlled methods – Use of chiral reagents – Asymmetric oxidation – Sharpless epoxidation – Asymmetric reduction – borate reagents.	P1,P3,P5,P10	PQ,PT

PAPER -IV: Chemistry of Natural Products

Course:Msc.organic chemistry	Year/Semester	::2-1 Fac	culty Name:CH.	MALLIKA		
Subject:organic chemistry	1. PaperIV-ChemistryofNaturalProducts					
Units: Learning Objectives:	 1.Antibiotics Terpenes Alkaloids Natural Flavanoids Natural pigment Acquire the knowledge of isolation, structural elucidation, stereochemistry, synthesis and biological properties of selected antibiotics Understand isolation, structural elucidation, stereochemistry, synthesis and biological properties of selected terpenes Apply the knowledge and understanding isolation, structural elucidation, stereochemistry, synthesis and biological properties of alkaloids Develop interest in the areas of isolation, structural elucidation, stereochemistry, synthesis and biological properties of Flavonoids Understand isolation, structural elucidation, 					
Units	U1	U2	erties of natura U3	U4	U5	
Total Hours: 60	12	11	12	13	12	
Internal Evaluation	4	4	4	4	4	

December	StudyMaterial(Handouts):
ResourceMat erial:	https://annamalaiuniversity.ac.in/studport/download/engg/pharm/resources pharmd_3Y_3.5_medicinal%20Chemistry.pdf
	Reference Material:1.OrganicChemistry,Volume2,Stereochemistryandchemistryofnat
	 Organice hemistry, volume2, stereochemistry and chemistry offat uralproducts, I.L.Finar, 5thEdition.ELBS. ChemicalAspectsofBiosynthesis, JohnMann, Oxford UniversityPress, Oxford, 1996
	 ChemistiyofNaturalProducts.AUnifiedApproach,N.R.Krishnasw amy, Universe.Press (India) Ltd., Orient Longman Limited,Hyderabad,1999. Chemistryofnaturalproducts,S.V.Bhat,NarosaPublishingHouse,6
	threprint2010. You tube Links:
	https://www.youtube.com/watch?v=K1mD55y4Yhg ModelQuestionpaper:
	https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-syllabus.html

EVALUATION PEDAGOGY

Unit-Wise Plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	Antibiotics- Isolation, structure elucidation, stereochemistry, synthesis and biological properties of Pencillin G, Cephalosphorin-C, streptomycin, chloramphenicol and tetracyclins		PT,P10
II	TERPENES- Isolation, structure elucidation, stereochemistry, synthesis and biological properties of Terpenes: Forskolin, taxol and β-amyrin		PQ,PT
III	Alkaloids- Isolation, structure elucidation, stereochemistry, synthesis, and biological properties of Alkaloids: Morphine, reserpine and vincristine	P1,P3,P4,P5	PT,P10
IV	Natural flavonoids: Natural Flavonoids : Apigenin, flavanones-Hesperetin, Isoflavones-Genistein, Flavonolqurcetin, xanthone- Euxanthone.	P1,P3,P4,P5	PQ,PT
V	Natural pigments – Natural Pigments: Introduction structure elucidation and synthesis of quinones-Polyporic acid. Chlorophyll and haemin.	P1,P3,P4,P5	PQ,PT

<u>SEMESTER – IV</u>

PAPER -II: MODERN SYNTHETIC METHODOLOGY

Course: M.Sc.(Organic chemistry)	Year/Semester:2/2 Faculty Name:R:ANURADHA					
Subject:	ModernSyntheticMethodologyinOrganicChemistry					
Units:	 1.ModernSyntheticMethods 2.MulticomponentReactions andMetathesis 3.Oxidation 4.Reduction 5.Newer methods in organic synthesis 					
Learning Objectives	 Acquire the knowledge of various modern synthetic methods. Understand multicomponent reactions and meta thesis Apply the knowledge and understanding of metal and non metal based oxidations To understand the concept of Reduction - homogeneous and heterogeneous catalytic hydrogenation. Develop interest in the areas of green chemistry, nano materials and phase transfer catalysts 					
Units	U1 U2 U3 U4					
Total Hours: 60	10 10 15 15 10					
Internal Evaluation	4	4	4	4	4	

Resour erial:	ceMat	StudyMaterial(Handouts): https://www.epa.gov/greenchemistry/basics-green-chemistry
		https://www.epa.gov/greenenenistry/basics-green-enenistry
	<u>17</u> 2	ReferenceBooks:
		 SomeModernMethodsofOrganicSynthesisW.Carothers,ThirdEdi tion,Cambridge UniversityPress,Cambridge,1988. F.A.CaryandR.I.Sundberg,AdvancedOrganicChemistry,PartAa ndB,5thEdition,Springer,2009. M.B.Smith,OrganicSynthesis,2ndEdition,2005 J.Tsuji,PalladiumReagentsandCatalysts,NewPerspectivesforthe2
		1stCentury,John Wiley&Sons,2003.
		 5.I.Ojima,CatalyticAsymmetricSynthesis,2ndedition,Wiley –VCH,NewYork,2000.
		 J.Clayden, N.Greeves, S.Warrenand P.Wothers, Organic Che mistry, Oxford University Press, 2001.
		8. R.Noyori,AsymmetricCatalysisinOrganicSynthesis,JohnW iley&Sons,1994.
		 L.KuertiandB.Czako,StrategicApplicationsofnamedRe actionsinOrganicSynthesisElsevierAcademicPress,200 5 10.
		Greenchemistry, Theory and Practical, Paul T. Anastas and John C. Warner.
		11. NewtrendsingreenchemistryByV.K.AhulwaliaandM.Kidwai.
		YouTubeLinks: https://youtu.be/Zas_JlccBNQ
		<u>https://youtu.be/PfQiyHZydtk</u>
		PowerPointPresentations: <u>https://www.slideshare.net/Krishanyadav28/synthesis-</u> of-nanomaterials
		ModelQuestionpaper:
		https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-syllabus.html

Unit-Wise Plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
[Modern Synthetic Methods :: Baylis-Hillman reaction, Henry reaction, Nef reaction, Kulinkovich reaction, Ritter reaction, Sakurai reaction, Tishchenko reaction and Ugi reaction. Brook rearrangement; Tebbe olefination. Metal mediated C-C and C-X coupling reactions: Heck, Stille, Suzuki, Negishi and Sonogashira, Nozaki-Hiyama, Buchwald-Hartwig, Ullmann coupling reaction.	P5,P10	P10,PT
II	 Multi component Reactions: Passerini reaction, Biginelli reaction, Hantzsch reaction and Mannich reaction. Metathesis: Grubb's 1st generation and 2nd generation catalyst, Olefin Cross coupling Metathesis (OCM), Ring Closing Metathesis(RCM), Ring Opening Metathesis (ROM) and applications 	P1,P3, P5,P10	P10,PT
III	Oxidation: Metal based and non-metal based oxidations of (a) alcohols to carbonyls (Chromium, Manganese, aluminium, silver, ruthenium, DMSO, hypervalent iodine and TEMPO based reagents). (b) phenols (Fremy's salt, silver carbonate) (c) alkenes to epoxides (peroxides/per acids based), Sharpless asymmetric epoxidation, Jacobsen epoxidation, Shi epoxidation.(d) alkenes to diols (Manganese, Osmium based), Sharpless asymmetric dihydroxylation, Prevost reaction and Woodward modification, (e) alkenes to carbonyls with bond cleavage (Manganese, Osmium, Ruthenium and lead based, ozonolysis) (f) alkenes to alcohols/carbonyls without bond cleavage (hydroboration-oxidation, Wacker oxidation, selenium, chromium based allylic oxidation) (g) ketones to ester/lactones (Baeyer-Villiger)	P1,P3, P5,P10	P10,PT
IV	Reduction: (a) Catalytic hydrogenation (Heterogeneous: Palladium/Platinum/Rhodium/Nickel etc; Homogeneous: Wilkinson). Noyori asymmetric hydrogenation. (b) Metal based reductions using Li/Na/Ca in liquid ammonia, Sodium, Magnesium, Zinc, Titanium and Samarium (Birch, Pinacol formation, McMurry, Acyloin formation, dehalgenation and deoxygenations) (c) Hydride transfer reagents-NaBH4 triacetoxyboro hydride, L-select ride, K-select ride, Luche reduction; Li/AlH4, DIBAL-H, and Red-Al.	P1,P3, P5,P10	P10,PT
V	NEWER METHODS IN ORGANIC SYNTHESIS: Green Chemistry: Introduction, principles, atom economy and scope (illustrate with two examples) Microwave induced reactions: Principle conditions, advantages over conventional heating methods-applications Ionic liquids: Introduction and applications in organic synthesis (illustrate with two examples). Nanomaterials: Introduction, methods of preparation, applications in organic synthesis Phase-transfer catalysis: solid-solid, solid-liquid systems-mechanism of catalytic action, type of catalysts, application in few important reactions	P5,P10	P10,PT

PAPER -II: Organic Spectroscopy-II

Course:MSC (organic chemistry)	Year/Semester:2-2	Faculty Name	: R.ANURA	DHA	
Subject:	PAPER II: ORGANIC SPECTROSCOPY- II				
Units:	 1.13C NMR Spectroscopy 2.Heteronuclear NMR Spectroscopy &ESR spectroscopy 3.NMR Instrumentation, 2D NMR Techniques 4.Optical Rotatory Dispersion & CD Spectroscopy 5.Structural Determination of natural products by spectral methods 				
LearningObjectives	 Underst spectros Apply t instrum Develop To gain 	 Acquire the knowledge of 13C NMR spectroscopy Understand Heteronuclear coupling and ESR spectroscopy. Apply the knowledge and understanding of NMR instrumentation and 2D NMR techniques. Develop interest in the ORD and CD spectroscopy 			
Units	U1	U2	U3	U4	U5
Total Hours: 60	12 li Hours: 60		12	12	12
Internal Evaluation	4	4	4	4	4

F	ResourceMat	StudyMaterial(Handouts):
•	erial:	ReferenceBooks:
		1) Spectroscopic Methods in Organic Chemistry. Forth Edition D.M.
	<u>80</u> 2	Williams and I. Fleming Tata - McGraw Hill, New Delhi, 1990. For
		all spectral methods except ORD and CD and ESR.
		2) Organic Spectroscopy, Second Edition, W.Kemp, ELBS Macmillan, 1987 forORD and CD and ESR.
		 3) Book 2 mentioned above. 4) Applications of absorption spectroscopy of Organic Compounds J.R.Dyer, Prentice Hall of India, New Delhi, 1984.
		5) Spectrometric identification of . Organic Compounds, Fourth Edition, R.M.Silverstein; G.C.Vasslellr and T.C. Merill, Johne Willey, Singapore, 1981.ForORD and CD "Applications of Optical rotation and Circular Dichroism", G.C. Barret, in "Elucidation of Organic structures by Physical and Chemical Methods" Part I (Eds) K.W. Bentley and G.W.Rirty John Wiley, 1972, Chapter VIII (onlythose aspects mentioned in the syllabus).
		YouTubeLinks: https://youtu.be/eOKeVKjZ6Dk
		https://youtu.be/q72mVbU7orE
		Power Point Presentations:
		https://slideplayer.com/slide/15722339/
		Model papers:
		<u>https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-</u> syllabus.html

Unit-wise Plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
I	13C NMR spectroscopy Introduction, 13C-chemical shifts, factors affecting the chemical shifts, chemical shifts of organic compounds. Calculation of chemical shifts of alkanes, alkenes and aromatic compounds. Types of 13C NMR spectra: Proton- coupled, proton- decoupled and OFF-resonance decoupled (ORD) spectra, DEPT. 13C-NMR solvents:	10	PT,P10
II	Heteronuclear NMR spectroscopy & Electron Spin Resonance Spectroscopy (ESR): Heteronuclear couplings: 13C1H, 13C-D, 13C19F, 13C31P.1H-D, 1H19F, 1H31P, 1H15N ESR Spectroscopy: Principles, hyperfine splitting		PQ,P10
III	NMR Instrumentation, 2D-NMR techniques NMR Instrumentation: Types of NMR Spectrometers-Continuous Wave (CW)-NMR, Fourier Transform (FT)-NMR, NMR solvents, sample preparation 2D-NMR techniques: Principles of 2D NMR, Correlation spectroscopy (COSY) HOMO COSY (1H-1H COSY), Hetero COSY (1H, 13C COSY, HMQC), long range 1H,13C COSY (HMBC), NOESY and 2D-INADEQUATE experiments and their applications		PT,PQ
IV	Optical Rotatory Dispersion (ORD) and CD Spectroscopy: Optical rotation, circular birefringence, and circular dichroism and Cotton effect. Plain curves and anomalous curves. Empirical and semiempirical rules-The axial haloketone rule, the octant rule, Application of the rules to the study of absolute configuration and conformations of organic molecules	P1,P3,P5,P10	P10,PT
V	Structure determination of natural products by spectral	P1,P3,P5,P10	P10,PT

PAPER -III: DESIGNING ORGANIC SYNTHESIS AND SYNTHETIC APPLICATIONS OF ORGANO-BORANES AND SILANES

Course:M.Sc.(Organic chemistry)	Year/Ser	nester:2-2	Faculty Name:	CH. Mallik	a
Subject:	Paper IV: DESIGNING ORGANIC SYNTHESIS AND SYNTHETIC APPLICATIONS OF ORGANO-BORANES AND-SILANES				
Units:	 1.Disconnectionapproach–Principles 2. SyntheticStrategies- Onegroupdisconnections 3.SyntheticStrategies- Twogroupdisconnections 4. Organoboranes 5.OrganoSilanes 				
LearningObjectives	 Acquire the knowledge of the disconnection approach and its principles. Understand the synthetic strategies for one group disconnection Apply the knowledge and understanding of disconnection Approach, synthetic strategies in two group disconnection Develop interest in the areas of the organo boranes preparations and their synthetic applications. 				
	• Understand the preparations and synthetic applications of organosilanes				
Units	U1	U2	U3	U4	U5
Total Hours: 60	14 10 11 13 12				12
Internal Evaluation: 20M	4	4	4	4	4

esourceMat 📼 ial:	StudyMaterial(Handouts): <u>https://www.massey.ac.nz/~gjrowlan/chem312/tutorial.pdf</u>				
	ReferenceBooks:				
	 a. Organic syntheses via boranes / Herbert C. Brown; with techniquesby Gary.W. Kramer,Alan B. Levy, M. Mark Midland. New York : Wiley,1975 b. SomeModernMethodsofOrganicSynthesisW.Carothers,Th irdEdition,CambridgeUniversityPress,Cambridge,1988. c. OrganicSynthesis:Thedisconnectionapproach,S.WarrantJo hnWiley&sons,NewYork,1984. d. 4.Modern Synthetic Reactions, Herbert O.House, SecondEdition, e. W.A.Benzamine,Inc.MenioPark,California,1972. f. Principle of Organic Synthesis-R.O.C. Norman and J. M.Coxon.(ELBS) g. Organic Synthes is: Special techniques.V.K.Ahulwalia and RenuAggarwal. h. OrganicSynthesisbyCWillisandMWillis i. ProblemsonorganicsynthesisbyStuartWarren 				
	YouTubeLinks: https://www.youtube.com/watch?v=0XJEgJ8OD28				
	https://www.youtube.com/watch?v=KsMXXgbhVkk ModelQuestionpaper: https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-syllabus.html				

Unit– Wise plan

UNIT	DESCRIPTION	PEDAGOGY	INTERNAL EVALUATION
	Disconnection approach –Principles Introduction, Terminology: Retrosynthesis, Target Molecule (TM), synthon, synthetic equivalent, functional group interconversion (FGI). Linear and convergent synthesis. Criteria for selection oftarget . Order of events in retrosynthesis with reference to Salbutamol, Proparcaine and Dopamine. Chemoselectivity, Regioselectivity, reversal of polarity and cyclizations. Protecting groups- Principles of protection of alcohols, amine, carbonyl and carboxyl groups	P1,P3,P5	PT,P10
11	Synthetic Strategies-One group disconnections A) Introduction to one group disconnections: C-C disconnection- alcohols and carbonyl compounds; C-X disconnections- alcohols and carbonyl compounds and sulphides two group C-C and C-X Disconnections.	P1,P3,P5	PQ,P10
ш	Synthetic Strategies-Two group disconnections B) Introduction to Two group C-C disconnections; Diels-Alder reaction, 1,5- difunctionalised compounds, Michael addition and Robinson annulation. Two group C-X disconnections; 1, 1 difunctionalised, 1, 2-difunctionalised and 1, 3-difunctionalised compounds. Control in carbonyl condensations, explanation with examples oxanamide and mevalonic acid.	P1,P3,P5	PQ,P10
IV	Organoboranes Hydroboration- Preparation of Organoboranes. Reagents – dicylohexyl borane, disiamyl borane, thexyl borane, 9-BBN and mono-, di-isopinocampheyl borane. Functional group transformations of Organo boranes-Oxidation, protonolysis and rearrangements. Formation of carbon-carbon-bonds viz organo boranes- carbonylation, cyanoboration.	P1,P3,P5	PT,PQ
V	Organo Silanes Preparation and synthetic applications of trimethylsilyl chloride, dimethyl-tbutylsilyl chloride, trimethylsilyl cyanide, trimethylsilyl iodide and trimethylsilyl triflate. Protection of functional groups- Trimethylsilyl ethers, Silyl enol ethers. Synthetic applications of α -silyl carbanions, β -silyl carbonium ions. Peterson's olefination.	P1,P3,P5, P10	P4,PT

PAPER -IV: DRUG DESIGN AND DRUG CHEMISTRY

Course:Msc.organic chemistry	Year/Semester:2-2 Faculty Name: CH. MALLIKA				
Subject:organic chemistry	PaperIV-DRUG DESIGN AND DRUG CHEMISTRY				
Units:	 Basic consideration of drugs Antineoplastic Agent Cardiovascular Drugs OralHypoglycemic Drugs Local Anti-infective Drugs& Antiviral drugs 				
Learningobjectives:	 Acquire the knowledge of drugs, their classification, drug metabolism and drug development, Structure Activity Relationship in drugs Understand drugs, their classification, drug metabolism of antineoplastic drugs Understand drugs, their classification, drug metabolism of cardiovascular drugs Acquire the knowledge of oral hypoglycemic drugs. Apply the knowledge and understanding of local anti-infective and antiviral drugs. 				
Units:	U1	U2	U3	U4	U5
Total Hours: 60	12	11	12	11	14
Internal Evaluation					

ResourceMateri al:	StudyMaterial(Handouts): https://baranlab.org/wp-content/uploads/2018/10/Final-Slides-1.pd
5000- P.	Reference books:
	1. Text book of medicinal chemistry , volume I & II, Third Edition by
	alagarsamy, CBS- publishers
	2. Introduction to medicinal chemistry , A. Gringuage Wiley –VCH
	 Wilson and Gisvolds text book of organic medicinal an pharmaceuiticalchemistry, Ed Robert F Dorge
	 4. An introduction to Drug Design. , S. S Pandeyeaand J.R Dimmocl New age international
	5. Burgers Medicicnal chemistry and Drug discovery , Vol-1(chapter - and chap -14)Ed M E Wollff, john Wiley
	6. Good man Gillman Pharamacological Basis of Therapeutics , McGraw-Hill
	7. The Organic chemistry of drug design and drug action, R. B Silverman Acedamic Press
	8. Strategies of organic drug synthesis and design, D. Lednieer. John Wiley
	YouTubeLinks:
	https://www.youtube.com/watch?v=LWDQyaKVols
	https://www.youtube.com/watch?v=0tLYC89tRPc
	ModelQuestionpaper:
	<u>https://www.andhrauniversity.edu.in/student-corner/ug-and-pg-</u> syllabus.html

UNIT	DESCRIPTION	PEDAGOG Y	INTERNAL EVALUATIO N
I	Basic consideration of drugs General Classification, nomenclature, drug metabolism. Development of drugs : Procedure followed in drug design, concepts of lead compound lead modification, concept of prodrugs, Structure Activity Relationship (SAR)-factors affecting bio- activity-resonance, inductive effect, isosterism, bio-isosterism, spatial considerations, Qunatitative Structure Activity Relationships (QSAR)-Concepts of drug receptors. Elementary treatment of drug receptor interactions. Physico-chemical parameters: lipophilicity, partition coefficient, electronic ionization constants, steric, Shelton and surface activity parameters and redox potentials.	P1,P2,P3, P5	PQ,P10
II	Antineoplastic Agents: Introduction, classification-alkylating agents- mechanism and mode of action, nitrogen mustards- synthesis, properties, uses and dosage - Chlorambucil, cyclophosphamide and melphalan. Antimetobolites- synthesis, properties, uses and dosage-pyrimidine analogues-5-flurouracil, purine analogues-6-mercaptopurine, folic acid analogues- Methotrexate. Antibiotics-structure, properties and dosage- Doxorubicin, Mitomycin.	P1,P2,P3,	PT, P10
III	Cardiovascular Drugs: Introduction, cardiovascular diseases, drug inhibitors of peripheral sympathetic function, central intervention of cardiovascular output. Direct acting arteriolar dilators. Synthesis of amyl nitrate, sorbitrate, diltiazem, quinidine, verapamil, methyldopa, atenolol, oxyprenolol.		PT, PQ

IV	Oral Hypoglycemic Drugs: Introduction, Classification, Sulphonylureas - synthesis, mode of action, properties, uses and dosage- tolbutamide, glipizide. Biguanides - synthesis, mode of action, properties, uses and dosage-Metformin. <i>α</i> -glucosidage inhibitors- synthesis, mode of action, properties, uses and dosage- Miglitol. Dipeptidyl Peptidase-4 (DPP-4) inhibitors - synthesis, mode of action, properties, uses and dosage-saxagliptin and sitagliptin		PT, PQ
V	 Local Antiinfective Drugs & Antiviral drugs Local Antiinfective Drugs: Introduction and general mode of action. Synthesis of sulphonamides, ciprofloxacin, norfloxacin, dapsone, amino salicylic acid, isoniazid, fluconazole, econozole and chloroquin. Antiviral Drugs: Introduction, classification based on mechanism of action, Nucleoside or Nucleotide Reverse Transcriptase Inhibitors (NRTIs)-Synthesis, metabolism, properties and uses and dosage-Acyclovir, Zidovudine (Anti-HIV agent). Non-Nucleoside or Nucleotide Reverse Transcriptase Inhibitors (NNRTIs)-Synthesis, metabolism, properties and uses and dosage-Nevirapine, Efavirenz. Protease Inhibitors (PIs)- Synthesis, metabolism, properties and uses and dosage-Maraviroc. 	1 1 1	PT, P10